Abstract 4298: Predicting tumor evolution from digital histology using AI

组织学 医学 病理 生物
作者
Charlotte Spencer,Axel Camara,A. Riou,Lewis Au,José I. López,Zayd Tippu,Charles Maussion,K.M. Ho,Amy Strange,Emma Nye,Véronique Birault,Lydwine Van-praet,Kim Edmonds,Eleanor Carlyle,Steve Hazell,Sarah Rudman,James Larkin,Samra Turajlic
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (6_Supplement): 4298-4298
标识
DOI:10.1158/1538-7445.am2024-4298
摘要

Abstract Diverse clinical presentations of clear cell renal cell carcinoma (ccRCC) confound clinical decision making, leading to over and undertreatment. Clonal evolution of ccRCC proceeds through distinct trajectories characterised by differing levels of genomic intratumoral heterogeneity (gITH) and chromosomal complexity (weighted genomic instability index, wGII). However, accurate evaluation of these indices requires multiregional profiling of fresh tumour; cost prohibitive and logistically challenging in the clinical setting. Clinical histopathology workflows routinely capture multiple tumour areas enabling the use artificial intelligence (AI) to predict tumour evolutionary features directly from clinical grade H&E whole slide image (WSIs). ccRCC displays profound genetic and histological ITH but the link between these entities remains unclear. We leverage the TRACERx Renal cohort, comprising 1485 WSIs from 81 tumours to predict WGII and gITH and to gain insights into the relationship between genetic and histological ITH. Critically, each WSI is associated with a wGII and gITH label derived from a closely linked fresh tumour sample. For both prediction tasks, we extracted meaningful features for each WSI using self-supervised representation learning “MoCo”. Since high wGII confers poor prognosis we focussed on predicting binary stratification label of high wGII or low wGII (relative to the cohort median). First we predicted wGII as a continuous variable using a supervised multiple instance learning regression model trained on the MoCo features, and then classified the predicted wGII into “high” or “low” achieving 0.80 AUROC. To predict gITH we postulated that the degree of gITH would correlate with histological ITH. Using an unsupervised clustering of refined MoCo features we defined 24 histological clusters. The number of computationally derived histological clusters within a single tumour positively correlated with gITH (pearson’s 0.56). We used the number of clusters to classify WSIs into prognostic binary groups of high or low gITH (relative to the cohort median) achieving an AUROC of 0.80. To understand the biological relationship between histological and genetic ITH we pathologically characterised the histological clusters: a pathologist annotated WSIs with tumour architecture and cytomorphology. Image tiles were associated with the annotations using spatial coordinates, illuminating phenotypic traits of different evolutionary trajectories and providing an interpretability framework for our AI pipelines. Since the tumour evolutionary course dictates disease progression tempo, applying evolutionary classification in clinic can fundamentally improve patient care. Here, for the first time, we provide a framework to translate fundamental evolutionary principles underpinning tumour biology and clinical progression into a prognostic computational pathology biomarker possible to clinically implement. Citation Format: Charlotte E. Spencer, Axel Camara, Auriane Riou, Lewis Au, Jose I. Lopez, Zayd Tippu, Charles Maussion, Kenneth Ho, Amy Strange, Emma Nye, Veronique Birault, Lydwine Van-praet, Kim Edmonds, Eleanor Carlyle, Steve Hazell, Sarah Rudman, James Larkin, Samra Turajlic. Predicting tumor evolution from digital histology using AI [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 4298.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研猫发布了新的文献求助10
刚刚
Lucas应助尔舟行采纳,获得10
刚刚
bkagyin应助wsafhgfjb采纳,获得10
1秒前
2秒前
FaintStar发布了新的文献求助30
2秒前
俭朴幻巧发布了新的文献求助10
2秒前
jiaojiao完成签到,获得积分10
4秒前
隐形曼青应助捏嘿采纳,获得10
4秒前
4秒前
科研猫完成签到,获得积分10
5秒前
宋艳芳完成签到,获得积分10
6秒前
7秒前
7秒前
绒绒完成签到,获得积分10
7秒前
7秒前
8秒前
小明发布了新的文献求助10
9秒前
阿狸完成签到,获得积分10
9秒前
情怀应助煎炒焖煮炸培根采纳,获得10
10秒前
Joker发布了新的文献求助10
12秒前
12秒前
九日发布了新的文献求助10
12秒前
13秒前
四火发布了新的文献求助10
13秒前
SYX完成签到 ,获得积分10
13秒前
13秒前
aaa完成签到,获得积分10
14秒前
SciGPT应助LUJU采纳,获得10
15秒前
ding应助YLing采纳,获得10
16秒前
半醒发布了新的文献求助10
17秒前
cc完成签到,获得积分10
17秒前
尔舟行发布了新的文献求助10
18秒前
彩色的涵瑶完成签到,获得积分10
19秒前
迷路幼枫完成签到 ,获得积分10
19秒前
浮游应助panpanda采纳,获得10
22秒前
lele完成签到,获得积分10
22秒前
大卫王完成签到,获得积分20
22秒前
22秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Adult Development and Aging, 2nd Canadian Edition 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5567385
求助须知:如何正确求助?哪些是违规求助? 4652093
关于积分的说明 14698909
捐赠科研通 4593864
什么是DOI,文献DOI怎么找? 2520511
邀请新用户注册赠送积分活动 1492649
关于科研通互助平台的介绍 1463607