清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Improving Rebar Twist Prediction Exploiting Unified-Channel Attention-Based Image Restoration and Regression Techniques

钢筋 计算机科学 人工智能 灰度 频道(广播) 线性回归 计算机视觉 工程类 图像(数学) 机器学习 结构工程 计算机网络
作者
Jong-Chan Park,Gun-Woo Kim
出处
期刊:Sensors [MDPI AG]
卷期号:24 (14): 4757-4757 被引量:1
标识
DOI:10.3390/s24144757
摘要

Recent research has made significant progress in automated unmanned systems utilizing Artificial Intelligence (AI)-based image processing to optimize the rebar manufacturing process and minimize defects such as twisting during production. Despite various studies, including those employing data augmentation through Generative Adversarial Networks (GANs), the performance of rebar twist prediction has been limited due to image quality degradation caused by environmental noise, such as insufficient image quality and inconsistent lighting conditions in rebar processing environments. To address these challenges, we propose a novel approach for real-time rebar twist prediction in manufacturing processes. Our method involves restoring low-quality grayscale images to high resolution and employing an object detection model to identify and track rebar endpoints. We then apply regression analysis to the coordinates obtained from the bounding boxes to estimate the error rate of the rebar endpoint positions, thereby determining the occurrence of twisting. To achieve this, we first developed a Unified-Channel Attention (UCA) module that is robust to changes in intensity and contrast for grayscale images. The UCA can be integrated into image restoration models to more accurately detect rebar endpoint characteristics in object detection models. Furthermore, we introduce a method for predicting the future positions of rebar endpoints using various linear and non-linear regression models. The predicted positions are used to calculate the error rate in rebar endpoint locations, determined by the distance between the actual and predicted positions, which is then used to classify the presence of rebar twisting. Our experimental results demonstrate that integrating the UCA module with our image restoration model significantly improved existing models in Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) metrics. Moreover, employing regression models to predict future rebar endpoint positions enhances the F1 score for twist prediction. As a result, our approach offers a practical solution for rapid defect detection in rebar manufacturing processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
11秒前
14秒前
15秒前
激动的似狮完成签到,获得积分10
16秒前
Criminology34应助科研通管家采纳,获得10
42秒前
Criminology34应助科研通管家采纳,获得10
42秒前
汉堡包应助飞飞采纳,获得10
42秒前
45秒前
49秒前
飞飞发布了新的文献求助10
55秒前
56秒前
57秒前
57秒前
57秒前
57秒前
57秒前
57秒前
57秒前
57秒前
58秒前
58秒前
58秒前
58秒前
58秒前
58秒前
59秒前
59秒前
59秒前
59秒前
59秒前
59秒前
59秒前
59秒前
59秒前
59秒前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534355
求助须知:如何正确求助?哪些是违规求助? 4622348
关于积分的说明 14582572
捐赠科研通 4562591
什么是DOI,文献DOI怎么找? 2500254
邀请新用户注册赠送积分活动 1479794
关于科研通互助平台的介绍 1450981