Deep learning-based approach for identifying vortex-induced vibrations in stay cables

振动 结构工程 涡流 涡激振动 计算机科学 材料科学 工程类 声学 机械 物理
作者
Jian Guo,Renjie Mao,Kaijiang Ma,Dennis Chen
出处
期刊:Advances in Structural Engineering [SAGE Publishing]
标识
DOI:10.1177/13694332241295594
摘要

Due to variations in wind speed profiles along the length of bridge stay cables, vortex-induced vibrations (VIV) exhibit multimodal characteristics, presenting challenges for VIV identification. Currently, the VIV identification is concentrated on the stable stage of VIV, lacking an available early warning system for detecting the initial developing stage of VIV. In this study, a deep learning-based approach that integrates energy distribution ratio features derived from frequency band wavelet packet decomposition to recognize VIV of stay cable was proposed. Firstly, vibration characteristics induced by vortices in cable-stayed bridges were analyzed based on field monitoring data from the bridge health monitoring system, aiming to propose suitable feature indicators for VIV identification. Secondly, using root mean square as label classification, a deep learning model was constructed, incorporating convolutional neural networks, long short-term memory networks, and attention mechanisms. Finally, four different stages in the evolution of stay cables VIV were identified utilizing field monitoring datasets to analyze the optimal parameter. Meanwhile, effective early warning recognition was achieved through the classification and recognition of confusion matrix. This study provides technical support for early warning systems and structural condition assessment concerning bridge stay cable VIV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ACE完成签到,获得积分10
刚刚
幸福五发布了新的文献求助10
刚刚
1秒前
领导范儿应助袁气小笼包采纳,获得10
1秒前
1秒前
2秒前
3秒前
赘婿应助lirs采纳,获得10
3秒前
小哥完成签到,获得积分20
4秒前
4秒前
osmanthus应助学习学习采纳,获得10
4秒前
5秒前
laws发布了新的文献求助10
5秒前
青山发布了新的文献求助10
6秒前
qcwindchasing完成签到,获得积分10
6秒前
8秒前
漂泊1991应助Cherish采纳,获得10
8秒前
123完成签到,获得积分10
9秒前
10秒前
10秒前
美好斓发布了新的文献求助10
11秒前
Owen应助十元采纳,获得10
11秒前
张家木完成签到,获得积分10
12秒前
12秒前
叶迎发布了新的文献求助30
13秒前
ssss发布了新的文献求助10
13秒前
13秒前
13秒前
柯飞扬完成签到,获得积分10
13秒前
14秒前
淡定汉堡完成签到,获得积分10
15秒前
Clovis33完成签到,获得积分10
15秒前
15秒前
zhuoai发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
lskyin完成签到,获得积分20
17秒前
18秒前
shilong.yang发布了新的文献求助30
18秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3896887
求助须知:如何正确求助?哪些是违规求助? 3440758
关于积分的说明 10818488
捐赠科研通 3165685
什么是DOI,文献DOI怎么找? 1748890
邀请新用户注册赠送积分活动 845052
科研通“疑难数据库(出版商)”最低求助积分说明 788423