Efficient and lightweight convolutional neural network architecture search methods for object classification

卷积神经网络 计算机科学 建筑 人工智能 对象(语法) 模式识别(心理学) 网络体系结构 机器学习 计算机体系结构 计算机网络 艺术 视觉艺术
作者
Chuen‐Horng Lin,Tsung-Yi Chen,Huan-Yu Chen,Yung‐Kuan Chan
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:156: 110752-110752 被引量:4
标识
DOI:10.1016/j.patcog.2024.110752
摘要

Determining the architecture of deep learning models is a complex task. Several automated search techniques have been proposed, but these methods typically require high-performance graphics processing units (GPUs), manual parameter adjustments, and specific training approaches. This study introduces an efficient, lightweight convolutional neural network architecture search approach tailored for object classification. It features an optimized search space design and a novel controller design. This study introduces a refined search space design incorporating optimizations in both spatial and operational aspects. The focus is on the synergistic integration of convolutional units, dimension reduction units, and the stacking of Convolutional Neural Network (CNN) architectures. To enhance the search space, ShuffleNet modules are integrated, reducing the number of parameters and training time. Additionally, BlurPool is implemented in the dimension reduction unit operation to achieve translational invariance, alleviate the gradient vanishing problem, and optimize unit compositions. Moreover, an innovative controller model, Stage LSTM, is proposed based on Long Short-Term Memory (LSTM) to generate lightweight architectural sequences. In conclusion, the refined search space design and the Stage LSTM controller model are synergistically combined to establish an efficient and lightweight architecture search technique termed Stage and Lightweight Network Architecture Search (SLNAS). The experimental results highlight the superior performance of the optimized search space design, primarily when implemented with the Stage LSTM controller model. This approach shows significantly improved accuracy and stability compared to random, traditional LSTM, and Genetic Algorithm (GA) controller models, with statistically significant differences. Notably, the Stage LSTM controller excels in accuracy while producing models with fewer parameters within the expanded architecture search space. The study adopts the Stage LSTM controller model due to its ability to approximate optimal sequence structures, particularly when combined with the optimized search space design, referred to as SLNAS. SLNAS's performance is evaluated through experiments and comparisons with other Neural Architecture Search (NAS) and object classification methods from different researchers. These experiments consider model parameters, hardware resources, model stability, and multiple datasets. The results show that SLNAS achieves a low error rate of 2.86% on the CIFAR-10 dataset after just 0.2 days of architecture search, matching the performance of manually designed models but using only 2% of the parameters. SLNAS consistently demonstrates robust performance across various image classification domains, with an approximate parameter count 700,000. To summarize, SLNAS emerges as a highly effective automated network architecture search method tailored for image classification. It streamlines the model design process, making it accessible to researchers without specialized knowledge in deep learning. Optimizing this method unlocks the full potential of deep learning across diverse research areas. Interested parties can publicly access the source code and pre-trained models through the following link: https://github.com/huanyu-chen/LNASG-and-SLNAS-model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yohana完成签到 ,获得积分10
刚刚
土墙完成签到,获得积分20
1秒前
Hello应助李审绥采纳,获得10
1秒前
长大lwp完成签到,获得积分10
1秒前
2秒前
yyyyyyyyjt完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助20
3秒前
lan199623完成签到,获得积分10
3秒前
传奇3应助咳炎泥马采纳,获得10
3秒前
3秒前
漫若浮光关注了科研通微信公众号
4秒前
5秒前
6秒前
达鸟啊完成签到,获得积分10
6秒前
imprint完成签到 ,获得积分10
8秒前
8秒前
小马甲应助席成风采纳,获得10
8秒前
yangching完成签到,获得积分10
9秒前
9秒前
11秒前
wakaka发布了新的文献求助10
11秒前
土墙发布了新的文献求助10
11秒前
Nl发布了新的文献求助10
12秒前
sssssss发布了新的文献求助10
12秒前
小张完成签到,获得积分10
13秒前
13秒前
Miracle发布了新的文献求助10
13秒前
01231009yrjz完成签到,获得积分10
13秒前
Leeppya发布了新的文献求助10
13秒前
14秒前
清修完成签到,获得积分10
14秒前
15秒前
小漆发布了新的文献求助10
17秒前
18秒前
19秒前
kki发布了新的文献求助10
19秒前
珂泐发布了新的文献求助10
19秒前
alick发布了新的文献求助10
20秒前
是三石啊完成签到 ,获得积分10
21秒前
hei完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4855031
求助须知:如何正确求助?哪些是违规求助? 4152184
关于积分的说明 12866610
捐赠科研通 3901709
什么是DOI,文献DOI怎么找? 2143911
邀请新用户注册赠送积分活动 1163559
关于科研通互助平台的介绍 1064074