Fault Detection Method for Transmission Line Components Based on Lightweight GMPPD-YOLO

输电线路 计算机科学 传输(电信) 故障检测与隔离 断层(地质) 直线(几何图形) 人工智能 电信 地质学 数学 地震学 几何学 执行机构
作者
Dong Wu,Weijiang Yang,Jiechang Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 116015-116015
标识
DOI:10.1088/1361-6501/ad7310
摘要

Abstract This paper designs a lightweight high-precision transmission line component detection model, named grouped dense, monotonic self-regularized, and partial faster convolution, pruning, and distillation optimized—you only look once (GMPPD-YOLO), in transmission line inspection. It addresses the issue of low detection accuracy of target detection algorithms due to the complex background, large differences in target shape, location, texture, etc, as well as diversified and smaller defects in insulator and vibration hammer images taken by unmanned aerial vehicles from multiple angles. To enhance the model’s feature extraction capabilities in complex backgrounds and across different scales, the grouped dense C3 dense feature extraction module was designed, enabling the model to more effectively handle diverse defect forms. Simultaneously, the monotonic self-regularized pyramid pooling–fast (MSPPF) module is proposed to enhance the model’s capability to process multi-scale information. Additionally, the partial-faster C3 feature awareness module is designed to improve feature fusion performance, enhancing the model’s ability to perceive features at different scales. Finally, channel pruning was used to reduce redundant parameters, and knowledge distillation was employed to compensate for the accuracy loss caused by pruning. This approach further compressed the model size while ensuring its detection performance. The experimental results demonstrate that compared to the original YOLOv5s algorithm, the proposed GMPPD-YOLO algorithm achieves a reduction in parameters by 68.4%, a decrease in Giga floating-point operations per second by 58.2%, and a reduction in the model size by 66.4%, while achieving an increase in precision by 1%, mAP50 by 1.1%, and mAP95 by 0.4%. This confirms the significant potential of the GMPPD-YOLO algorithm for deployment in real-time drone-based power transmission line inspections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Akim应助猪猪hero采纳,获得10
3秒前
6秒前
xxp完成签到 ,获得积分10
10秒前
啦啦啦完成签到 ,获得积分10
10秒前
慧姐发布了新的文献求助10
10秒前
trust发布了新的文献求助10
15秒前
引子完成签到,获得积分10
15秒前
阿南完成签到,获得积分10
17秒前
pep完成签到 ,获得积分10
17秒前
张宁波完成签到,获得积分0
17秒前
小瓶盖完成签到 ,获得积分10
17秒前
18秒前
忧伤的绍辉完成签到 ,获得积分10
18秒前
年轻的问兰完成签到 ,获得积分10
18秒前
Davey1220完成签到,获得积分10
25秒前
乐观的问兰完成签到 ,获得积分10
28秒前
29秒前
Richardisme完成签到 ,获得积分10
30秒前
害羞的书芹完成签到,获得积分10
33秒前
斯通纳完成签到 ,获得积分10
34秒前
意明完成签到,获得积分10
34秒前
曾经如是完成签到,获得积分10
34秒前
舒适的天奇完成签到 ,获得积分10
36秒前
等待的幼晴完成签到,获得积分10
38秒前
意明发布了新的文献求助10
38秒前
39秒前
可飞完成签到,获得积分10
41秒前
gdj发布了新的文献求助10
43秒前
上官若男应助科研通管家采纳,获得10
43秒前
amberzyc应助科研通管家采纳,获得10
43秒前
43秒前
43秒前
43秒前
缓慢的饼干完成签到,获得积分10
44秒前
丸子博士完成签到,获得积分20
44秒前
47秒前
Luna爱科研完成签到 ,获得积分10
47秒前
热情蜗牛完成签到 ,获得积分10
49秒前
jeff完成签到,获得积分10
50秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4086863
求助须知:如何正确求助?哪些是违规求助? 3625687
关于积分的说明 11497520
捐赠科研通 3339129
什么是DOI,文献DOI怎么找? 1835785
邀请新用户注册赠送积分活动 903969
科研通“疑难数据库(出版商)”最低求助积分说明 822019