Data-Driven Optimization of Plasma Electrolytic Oxidation (PEO) Coatings with Explainable Artificial Intelligence Insights

等离子体电解氧化 电解质 等离子体 材料科学 人工智能 计算机科学 化学工程 化学 工程类 电极 物理 物理化学 量子力学
作者
Patricia Fernández-López,Sofia A. Alves,Aleksey B. Rogov,Aleksey Yerokhin,Iban Quintana,Aitor Duo,Aitor Aguirre
出处
期刊:Coatings [Multidisciplinary Digital Publishing Institute]
卷期号:14 (8): 979-979
标识
DOI:10.3390/coatings14080979
摘要

PEO constitutes a promising surface technology for the development of protective and functional ceramic coatings on lightweight alloys. Despite its interesting advantages, including enhanced wear and corrosion resistances and eco-friendliness, the industrial implementation of PEO technology is limited by its relatively high energy consumption. This study explores the development and optimization of novel PEO processes by means of machine learning (ML) to improve the coating thickness. For this purpose, ML models random forest and XGBoost were employed to predict the thickness of the developed PEO coatings based on the key process variables (frequency, current density, and electrolyte composition). The predictive performance was significantly improved by including the composition of the used electrolyte in the models. Furthermore, Shapley values identified the pulse frequency and the TiO2 concentration in the electrolyte as the most influential variables, with higher values leading to increased coating thickness. The residual analysis revealed a certain heteroscedasticity, which suggests the need for additional samples with high thickness to improve the accuracy of the model. This study reveals the potential of artificial intelligence (AI)-driven optimization in PEO processes, which could pave the way for more efficient and cost-effective industrial applications. The findings achieved further emphasize the significance of integrating interactions between variables, such as frequency and TiO2 concentration, into the design of processing operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
adazbd完成签到,获得积分10
刚刚
orixero应助xiangdan采纳,获得30
1秒前
sariel完成签到,获得积分20
1秒前
鹿冶完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
雷生完成签到,获得积分10
4秒前
4秒前
五音发布了新的文献求助10
5秒前
sariel发布了新的文献求助20
8秒前
雷生发布了新的文献求助10
8秒前
傻傻的书白完成签到 ,获得积分10
9秒前
成就仇天发布了新的文献求助10
9秒前
哈哈哈哈发布了新的文献求助10
9秒前
夹谷蕈发布了新的文献求助10
9秒前
科研通AI5应助无限的易云采纳,获得10
11秒前
xcltzh1296完成签到,获得积分10
11秒前
ttx发布了新的文献求助10
13秒前
Ava应助东方诩采纳,获得10
13秒前
13秒前
14秒前
隐形曼青应助Erislastem采纳,获得10
14秒前
15秒前
15秒前
lujie完成签到,获得积分10
15秒前
17秒前
vv发布了新的文献求助10
17秒前
深情安青应助哈哈采纳,获得10
17秒前
18秒前
18秒前
小二郎应助科研通管家采纳,获得10
19秒前
19秒前
852应助科研通管家采纳,获得10
19秒前
眰恦发布了新的文献求助10
19秒前
20秒前
20秒前
20秒前
21秒前
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810620
求助须知:如何正确求助?哪些是违规求助? 3355084
关于积分的说明 10374367
捐赠科研通 3071807
什么是DOI,文献DOI怎么找? 1687084
邀请新用户注册赠送积分活动 811413
科研通“疑难数据库(出版商)”最低求助积分说明 766652