A compact neuromorphic system for ultra–energy-efficient, on-device robot localization

神经形态工程学 机器人 计算机科学 能量(信号处理) 材料科学 嵌入式系统 人工智能 光电子学 物理 人工神经网络 量子力学
作者
Adam Hines,Michael Milford,Tobias Fischer
出处
期刊:Science robotics [American Association for the Advancement of Science (AAAS)]
卷期号:10 (103): eads3968-eads3968 被引量:2
标识
DOI:10.1126/scirobotics.ads3968
摘要

Neuromorphic computing offers a transformative pathway to overcome the computational and energy challenges faced in deploying robotic localization and navigation systems at the edge. Visual place recognition, a critical component for navigation, is often hampered by the high resource demands of conventional systems, making them unsuitable for small-scale robotic platforms, which still require accurate long-endurance localization. Although neuromorphic approaches offer potential for greater efficiency, real-time edge deployment remains constrained by the complexity of biorealistic networks. To overcome this challenge, fusion of hardware and algorithms is critical when using this specialized computing paradigm. Here, we demonstrate a neuromorphic localization system that performs competitive place recognition in up to 8 kilometers of traversal using models as small as 180 kilobytes with 44,000 parameters while consuming less than 8% of the energy required by conventional methods. Our system, locational encoding with neuromorphic systems (LENS), integrates spiking neural networks, an event-based dynamic vision sensor, and a neuromorphic processor within a single SynSense Speck chip, enabling real-time, energy-efficient localization on a hexapod robot. When compared with a benchmark place recognition method, sum of absolute differences, LENS performs comparably in overall precision. LENS represents an accurate fully neuromorphic localization system capable of large-scale, on-device deployment for energy-efficient robotic place recognition. Neuromorphic computing enables resource-constrained robots to perform energy-efficient, accurate localization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
妖精很通完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
3秒前
刘碰蛋完成签到,获得积分10
3秒前
322628发布了新的文献求助10
3秒前
3秒前
3秒前
专注的问寒应助明亮惜天采纳,获得50
3秒前
4秒前
AN应助Feng采纳,获得30
5秒前
7秒前
科目三应助妖精很通采纳,获得10
7秒前
雾非雾完成签到,获得积分10
7秒前
chenyuns发布了新的文献求助10
9秒前
包容的雨泽发布了新的文献求助100
9秒前
小豆包发布了新的文献求助30
10秒前
拼搏的帽子完成签到 ,获得积分10
10秒前
钟梓袄发布了新的文献求助10
11秒前
12秒前
充电宝应助小罗不吃芋头采纳,获得10
16秒前
等天晴的微波饺子完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
Akim应助chenyuns采纳,获得10
18秒前
小豆包完成签到,获得积分10
18秒前
轨迹应助hehexi采纳,获得20
18秒前
xixi很困完成签到,获得积分10
19秒前
20秒前
wangzheng发布了新的文献求助10
20秒前
20秒前
22秒前
23秒前
23秒前
我呜呜呜呜完成签到,获得积分10
23秒前
小黑鼠完成签到 ,获得积分10
23秒前
捌柒陆完成签到,获得积分10
24秒前
愉快芜榆发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
25秒前
26秒前
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778959
求助须知:如何正确求助?哪些是违规求助? 5644592
关于积分的说明 15450766
捐赠科研通 4910444
什么是DOI,文献DOI怎么找? 2642671
邀请新用户注册赠送积分活动 1590372
关于科研通互助平台的介绍 1544741