高电子迁移率晶体管
均方根
蒙特卡罗方法
电压
萃取(化学)
计算机科学
过程(计算)
数据建模
算法
均方误差
氮化镓
电子工程
材料科学
数学
工程类
晶体管
统计
电气工程
化学
图层(电子)
复合材料
操作系统
数据库
色谱法
作者
Fredo Chavez,Devin T. Davis,Nicholas C. Miller,Sourabh Khandelwal
标识
DOI:10.1109/led.2022.3197800
摘要
A fast and accurate deep learning (DL) based ASM-HEMT I-V model parameter extraction is presented for the first time. DL-based extraction starts with 120k training data-sets comprising of 374 million I-V data points. Training data-sets are generated through Monte Carlo simulations. The trained DL-model is demonstrated to successfully model 114 GaN HEMTs from a typical GaN fabrication process. The predicted parameters show an excellent fit for the I-V data. In addition, the root-mean-square(RMS) error incurred for key electrical parameters such as pinch-off voltage, linear condition current and the maximum current is 2.2%, 17.6%, and 2.4% respectively. The proposed approach is verified for multiple GaN HEMTs of different sizes. The developed technique can provide a very fast means for parameter extraction with a reasonable accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI