NEURO-ENDOCRINE-IMMUNE BIOLOGICAL NETWORK CONSTRUCTION OF QI DEFICIENCY PATTERN AND QI STAGNATION PATTERN IN TRADITIONAL CHINESE MEDICINE

中医药 术语 构造(python库) 本体论 表征(材料科学) 计算生物学 人工智能 计算机科学 数据科学 生物 心理学 医学 病理 替代医学 认识论 哲学 纳米技术 材料科学 程序设计语言 语言学
作者
Xing Zhai,Xuanchao Feng,Jingwei Liu,Kuo Gao,Zhenhua Jia,Huihui Zhao,Juan Wang,Wei Wang,Jianxin Chen
出处
期刊:Journal of Biological Systems [World Scientific]
卷期号:23 (02): 305-321 被引量:4
标识
DOI:10.1142/s0218339015500163
摘要

Nowadays, it is quite challenging to clarify Chinese medicine's results and its internal biological foundation in the traditional Chinese medicine (TCM) field. The key to break through this problem is to make the right methodological choices. From our study, a pattern consisting of many kinds of characterizations has been found, and every characterization corresponds with its internal biological indicators. If the relationship of every characterization and its biological indicators can be structured, and of each pattern and its biological indicators, it will help us to understand TCM better. Therefore, it is a better method to construct and analyze the "pattern-characterization-biological indicator" network. The aim of this paper is to distinguish two common Chinese medicine patterns, qi deficiency pattern and qi stagnation pattern, and their characterizations in terms of internal biology by using literature-mining methods. Furthermore, the results will be validated by clinical data to examine the methodological reliability. A neuro-endocrine-immune (NEI)-related gene data dictionary and a human phenotype ontology (HPO) characterizations terminology database have been established for these two patterns. Relevant literatures about the characterizations of these two patterns can be found on PubMed. Two different literature-mining software PubMiner and GenCliP, were used on the principle of "pattern-characterization-biological indicator" co-occurrence to find the characteristic NEI gene and the chemical messenger (CM) of Qi deficiency and qi stagnation patterns and to explore the difference in the bioactive substances between the two patterns, such as Hormones, Receptors, Cytokine, Neurotransmitters, etc. Biological networks of the two patterns and their various characterizations were separately constructed by using two literature-mining methods. After integrating and analyzing all kinds of networks, we found that qi deficiency pattern genes based on the NEI network include CD4, CHAT, EPO, GCG, INS, PTH, PRL, REN, SHBG and MAOA; and the key chemical transmitters include IgA, IgM, IgG, IL6, INFα, C3, C4, IL2, T, TSH, T3, T4, NO, EPO, E2, Serotonin, Histamine, ACTH, Hydrocortisone, Insulin, Cytokine, Calcitriol, Aldosterone, Adenosine, Somatostatin, Progesterone Acetylcholine, NE and Dopamine. Qi stagnation pattern genes based on the NEI network include EGF, EGFR, INS, PRL, SHBG, SNAP25, BDNF, COMT, DRD4, CD4 and IL6; and the key chemical transmitters include T3, E2, Prolactin, Serotonin, Steroids, T, ACTH, TSH, NE, ACTH and IL6. By comparing the literature data with clinical data, we found that abnormalities of the endocrine system, especially the thyroid, adrenal gland and gonadal gland, are closely related to the occurrence of coronary heart disease (CHD). The abnormalities in the endocrine system affect the immune system and nervous system, which eventually leads to CHD. The CHD of qi deficiency pattern emphasizes the imbalance of the immune system, while that of qi stagnation patients focuses on the imbalance of the nervous system. To some extent, it is feasible to use literature-mining methods to construct and analyze the "pattern-characterization-biological indicator" network as a new method of finding syndromes for the biological indicators. It provides an advanced, effective and concise method for the objectivity and internalization of traditional medicine. However, the universality and reliability of this method will need to be further validated by other syndrome studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
顾矜应助直率的笑翠采纳,获得10
3秒前
小彬发布了新的文献求助10
3秒前
SCI完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
科研通AI2S应助年轻的钥匙采纳,获得10
5秒前
纯情的咖啡豆完成签到 ,获得积分10
5秒前
英姑应助强健的糖豆采纳,获得10
6秒前
椿iii完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
8秒前
8秒前
Yetta完成签到,获得积分10
9秒前
YuLu发布了新的文献求助10
9秒前
酸汤肥牛完成签到,获得积分10
9秒前
迷你的百川完成签到,获得积分10
9秒前
云川发布了新的文献求助10
10秒前
11秒前
納佰巛完成签到,获得积分10
11秒前
科研小菜鸟完成签到,获得积分10
11秒前
8888拉完成签到,获得积分10
12秒前
13秒前
聪明小丸子完成签到 ,获得积分10
15秒前
16秒前
17秒前
17秒前
tinneywu完成签到,获得积分20
18秒前
19秒前
lovesonic发布了新的文献求助20
19秒前
20秒前
Kelsey完成签到 ,获得积分10
21秒前
22秒前
Dazzle123完成签到,获得积分10
23秒前
发C刊的人完成签到 ,获得积分10
24秒前
24秒前
elliot完成签到,获得积分10
25秒前
26秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3861006
求助须知:如何正确求助?哪些是违规求助? 3403326
关于积分的说明 10634747
捐赠科研通 3126563
什么是DOI,文献DOI怎么找? 1724098
邀请新用户注册赠送积分活动 830353
科研通“疑难数据库(出版商)”最低求助积分说明 779076