Defect Image Sample Generation With GAN for Improving Defect Recognition

人工智能 计算机科学 生成语法 深度学习 图像(数学) 集合(抽象数据类型) 模式识别(心理学) 数据集 字错误率 程序设计语言
作者
Shuanlong Niu,Bin Li,Xinggang Wang,Hui Lin
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:159
标识
DOI:10.1109/tase.2020.2967415
摘要

This article aims to improve deep-learning-based surface defect recognition. Owing to the insufficiency of the defect images in practical production lines and the high cost of labeling, it is difficult to obtain a sufficient defect data set in terms of diversity and quantity. A new generation method called surface defect-generation adversarial network (SDGAN), which employs generative adversarial networks (GANs), is proposed to generate defect images using a large number of defect-free images from industrial sites. Experiments show that the defect images generated by the SDGAN have better image quality and diversity than those generated by the state-of-the-art methods. The SDGAN is applied to expand the commutator cylinder surface defect image data sets with and without labels (referred to as the CCSD-L and CCSD-NL data sets, respectively). Regarding anomaly recognition, a 1.77% error rate and a 49.43% relative improvement (IMP) for the CCSD-NL defect data set are obtained. Regarding defect classification, a 0.74% error rate and a 57.47% IMP for the CCSD-L defect data set are achieved. Moreover, defect classification trained on the images augmented by the SDGAN is robust to uneven and poor lighting conditions. Note to Practitioners-This article proposes a method of defect image generation to address the lack of industrial defect images. Traditional defect recognition methods have two disadvantages: different types of defects require different algorithms and handcrafted features are deficient. Defect recognition using deep learning can solve the above problems. However, deep learning requires a plethora of images, and the number of industrial defect images cannot meet this requirement. We propose a new defect image-generation method called SDGAN to generate a defect image data set that balances diversity and authenticity. In practice, we employ a large number of defect-free images to generate a large number of defect images using our method to expand the industry defect-free image data set. Then, the augmented defect data set is used to build a deep-learning defect recognition model. Experiments show that the accuracy of defect recognition can be significantly improved by building a deep-learning defect recognition model using the augmented data set. Therefore, deep learning can achieve excellent performance in defect recognition with a limited number of defect images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助木光采纳,获得10
1秒前
打打应助Yellue采纳,获得10
2秒前
zhou完成签到,获得积分10
7秒前
cc完成签到,获得积分10
8秒前
13秒前
爆米花应助zaqqq采纳,获得10
14秒前
16秒前
uniphoton发布了新的文献求助10
17秒前
SQDHZJ完成签到,获得积分10
19秒前
Yon完成签到 ,获得积分10
21秒前
21秒前
隐形曼青应助iwhsgfes采纳,获得10
21秒前
23秒前
科研通AI2S应助徐佳乐采纳,获得10
25秒前
25秒前
WYN发布了新的文献求助10
27秒前
27秒前
28秒前
28秒前
俭朴夜香完成签到,获得积分10
29秒前
30秒前
xms2022发布了新的文献求助10
32秒前
周晏平发布了新的文献求助10
32秒前
Rein发布了新的文献求助10
33秒前
酷波er应助wenfeisun采纳,获得10
33秒前
34秒前
pazuzu发布了新的文献求助10
35秒前
慕青应助狂野的大公猪采纳,获得10
36秒前
36秒前
38秒前
pazuzu完成签到,获得积分20
40秒前
meng发布了新的文献求助10
41秒前
善学以致用应助周晏平采纳,获得30
41秒前
41秒前
徐佳乐发布了新的文献求助10
41秒前
42秒前
丘比特应助科研通管家采纳,获得10
42秒前
HEIKU应助科研通管家采纳,获得10
43秒前
赘婿应助科研通管家采纳,获得10
43秒前
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780337
求助须知:如何正确求助?哪些是违规求助? 3325661
关于积分的说明 10223791
捐赠科研通 3040806
什么是DOI,文献DOI怎么找? 1669006
邀请新用户注册赠送积分活动 798963
科研通“疑难数据库(出版商)”最低求助积分说明 758648