聚酰胺
材料科学
复合材料
制作
极限抗拉强度
热塑性塑料
复合数
拉伸试验
热塑性复合材料
熔丝制造
延伸率
纤维缠绕
聚合物
医学
病理
替代医学
作者
Bartosz Nowinka,Dariusz Sykutera
标识
DOI:10.1051/matecconf/202133201006
摘要
The study presents the influence of content and orientation of continuous carbon fibers (CF) on the static tensile test results of a polyamide matrix (PA) composite, produced using Continuous Filament Fabrication (CFF) technology. Taking the polyamide’s crystalline structure into account, an attempt was also made to produce test specimens under various temperature conditions of the device chamber. The test samples were produced in use of the Mark Two device (Markforged, Great Britain). It has been shown that the content and orientation of the reinforcement in relation to the direction of stresses generated during the static tensile test, has a significant impact on the parameters determined in this test. The dependence presented in the article, confirms that materials in a thermoplastic matrix, reinforced with continuous fibers are a topic in line with the topic of current trends in fields of material engineering and design of structural products. The conducted research proves that the temperature in the working chamber of the Mark Two device affects formation of mechanical properties of PA+CF composites, fabricated using CFF technology. Manufacturing composites at elevated temperature resulted in significant decrease of E and R m values for 4 out of five tests performed, but a considerable increase in their relative elongation at break was noticed.
科研通智能强力驱动
Strongly Powered by AbleSci AI