Mechanistic Insights into the De-/Lithiation of Iron-Doped Zinc Oxide: From Fundamental Understanding to Practical Considerations

法拉第效率 材料科学 阳极 锂(药物) 电解质 能量转换 纳米技术 储能 石墨 冶金 电极 功率(物理) 化学 热力学 物理 内分泌学 物理化学 医学
作者
Jakob Asenbauer,Tobias Eisenmann,Adele Birrozzi,Alexander Hoefling,Joachim R. Binder,Sylvio Indris,Matthias Kuenzel,Jens Tübke,Stefano Passerini,Dominic Bresser
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (2): 245-245
标识
DOI:10.1149/ma2020-022245mtgabs
摘要

Owing to their unique combination of high energy and power density, lithium-ion batteries are now the state-of-the-art energy storage technology for powering small consumer electronics and increasingly also for large-scale applications like electric vehicles. [1] Yet, especially for the latter, there is a growing need for batteries that can provide not only high energy densities, but also the possibility to be rapidly recharged. [2] This is challenging for the currently used graphite anodes, since its low lithiation potential (~0.1 V vs. Li/Li + ) in combination with the sluggish lithium transport across the solid electrolyte interphase (SEI) and within the graphite structure can lead to lithium plating and dendrite formation during fast charging, particularly at low temperatures. [3] To overcome this issue, various alternative anodes are being investigated, following, e.g., a conversion or an alloying mechanism. [4] While these alternatives frequently show higher capacities and rate capabilities, conversion materials still suffer from a significant voltage hysteresis, resulting in low energy efficiencies, and alloying materials suffer from extensive volume variations, leading to rapid capacity fading and low coulombic efficiencies. Conversion/alloying-materials (CAMs), as relatively new material class, combine the conversion and alloying mechanism in one single material. [5] In CAMs, such as Zn 0.9 Fe 0.1 O, nanograins of an alloying element and a percolating conductive network of transition metal nanoparticles are formed in situ by the initial (reversible) conversion reaction. This metallic nano-network enables fast de-/lithiation kinetics and renders them a promising candidate for high-power applications. Nevertheless, there is still a lack of knowledge about how to potentially tackle the remaining obstacles, i.e., the achievement of sufficiently high energy efficiencies and the volume variations occurring upon cycling. Herein, we report our findings towards an in-depth understanding of the de-/lithiation of (carbon-coated) Zn 0.9 Fe 0.1 O. Combining in situ microcalorimetry, in situ XRD, ex situ 7 Li NMR, and ex situ 57 Fe Mössbauer spectroscopy allowed us to propose a refined mechanism for the de-/lithiation reaction. Moreover, in situ dilatometry and ex situ cross-sectional SEM analysis reveal that the continuous volume variation at the electrode level is, in fact, in the range of 10%. This is much lower than theoretically predicted when considering bulk densities only – even if cycled within a 3-V potential window. Based on these results we highlight the beneficial effect of a limited operational voltage window, which we finally confirm for Zn 0.9 Fe 0.1 O/LiNi 0.5 Mn 1.5 O 4 full-cells, providing an excellent energy efficiency of >93%, accompanied by an energy and power density of 284 Wh kg -1 and 1105 W kg -1 , respectively. [1] N. Nitta, F. Wu, J. T. Lee, G. Yushin, Mater. Today 2015 , 18 , 252–264. [2] M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018 , 30 , 1800561. [3] J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen, D. Bresser, Sustain. Energy Fuels 2020 . [4] N. Loeffler, D. Bresser, S. Passerini, M. Copley, Johnson Matthey Technol. Rev. 2015 , 59 , 34–44. [5] D. Bresser, S. Passerini, B. Scrosati, Energy Environ. Sci. 2016 , 9 , 3348–3367.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LeoLee发布了新的文献求助10
1秒前
一方完成签到 ,获得积分10
1秒前
执着的蜗牛应助小刘采纳,获得10
2秒前
科研狗完成签到,获得积分10
2秒前
1762120发布了新的文献求助10
2秒前
隔壁的小民完成签到,获得积分10
3秒前
英姑应助momo采纳,获得10
3秒前
小二郎应助任性映秋采纳,获得10
4秒前
科研顺利发布了新的文献求助20
5秒前
5秒前
5秒前
秋水揽星河完成签到,获得积分10
6秒前
7秒前
Joins_Su完成签到 ,获得积分10
8秒前
喜爱大白兔完成签到,获得积分10
11秒前
杨涵发布了新的文献求助10
11秒前
白云之上完成签到,获得积分10
11秒前
11秒前
华仔应助Jnscal采纳,获得10
11秒前
7890733发布了新的文献求助10
12秒前
13秒前
14秒前
张张张完成签到,获得积分10
14秒前
过段时间发布了新的文献求助10
14秒前
14秒前
17秒前
小橘子完成签到,获得积分10
18秒前
momo发布了新的文献求助10
18秒前
俭朴新之完成签到 ,获得积分10
18秒前
上官若男应助zzd采纳,获得10
19秒前
19秒前
19秒前
新楚完成签到 ,获得积分10
20秒前
羊羊发布了新的文献求助10
20秒前
20秒前
小蘑材完成签到,获得积分10
23秒前
等待安柏发布了新的文献求助10
23秒前
25秒前
26秒前
001021完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289591
求助须知:如何正确求助?哪些是违规求助? 4441121
关于积分的说明 13826643
捐赠科研通 4323520
什么是DOI,文献DOI怎么找? 2373234
邀请新用户注册赠送积分活动 1368631
关于科研通互助平台的介绍 1332534