Multiscale U-Shaped CNN Building Instance Extraction Framework With Edge Constraint for High-Spatial-Resolution Remote Sensing Imagery

计算机科学 卷积神经网络 过度拟合 人工智能 稳健性(进化) 航空影像 遥感 足迹 数据集 集合(抽象数据类型) 图像分辨率 模式识别(心理学) 数据挖掘 计算机视觉 图像(数学) 人工神经网络 地质学 古生物学 基因 生物 化学 程序设计语言 生物化学
作者
Yuanyuan Liu,Dingyuan Chen,Ailong Ma,Yanfei Zhong,Fang Fang,Kai Xu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (7): 6106-6120 被引量:61
标识
DOI:10.1109/tgrs.2020.3022410
摘要

Building extraction based on high-resolution remote sensing imagery has been widely used in automatic surveying and mapping. However, few methods have been developed for building instance extraction, i.e., extracting each building's footprint separately, which is required in a number of applications, such as the smallest unit of a cadastral database. In building instance extraction, there are two challenges: 1) buildings with various scales exist in the imagery and 2) precise building footprints are difficult to extract due to the blurry boundaries. In this article, to solve these problems, a multiscale U-shaped convolutional neural network building instance extraction framework with edge constraint (EMU-CNN) for high-spatial-resolution remote sensing imagery is proposed. The proposed framework consists of three components: 1) a multiscale fusion U-shaped network (MFUN); 2) a region proposal network (RPN); and 3) an edge-constrained multitask network (ECMN). First, in the proposed method, the MFUN includes three parallel branches to learn multiple building features with different scales. The RPN then detects the positions of the building instances, even for buildings that are connected with each other. Moreover, according to the instance positions, the ECMN is proposed to extract a precise mask and suppress overfitting. The experiments conducted on a self-annotated data set and two public data sets (the ISPRS Vaihingen semantic labeling contest data set and the WHU aerial image data set) show that the EMU-CNN method can achieve excellent performance and shows great robustness at different scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
解语花发布了新的文献求助10
2秒前
小二郎应助布布采纳,获得10
2秒前
浮游应助lvlvlv采纳,获得10
2秒前
书生也要读书完成签到,获得积分20
3秒前
蒋蒋完成签到,获得积分10
4秒前
sc95完成签到,获得积分10
4秒前
5秒前
zy完成签到,获得积分10
5秒前
科研通AI5应助dd采纳,获得10
6秒前
6秒前
7秒前
蒋蒋发布了新的文献求助10
8秒前
微笑的忆枫完成签到,获得积分10
10秒前
11秒前
11秒前
lvlvlv完成签到,获得积分20
11秒前
11秒前
望海皆星辰完成签到,获得积分10
11秒前
12秒前
欢欢发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
qiu发布了新的文献求助10
13秒前
如意的青亦关注了科研通微信公众号
14秒前
桐桐应助kkkk采纳,获得10
15秒前
诱导效应发布了新的文献求助10
16秒前
害羞小蚂蚁完成签到,获得积分10
16秒前
hhhh_xt发布了新的文献求助10
16秒前
猫猫毛完成签到,获得积分10
17秒前
翁瑞婷发布了新的文献求助10
17秒前
充电宝应助欢欢采纳,获得10
17秒前
泠渊虚月完成签到,获得积分10
21秒前
balko完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
搜集达人应助Abc123采纳,获得10
23秒前
23秒前
云那边的山应助Lutras采纳,获得20
27秒前
27秒前
缥缈的青旋完成签到,获得积分10
28秒前
小蚊子发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4846656
求助须知:如何正确求助?哪些是违规求助? 4146532
关于积分的说明 12841991
捐赠科研通 3893453
什么是DOI,文献DOI怎么找? 2140186
邀请新用户注册赠送积分活动 1160081
关于科研通互助平台的介绍 1060384