Systematically Scrutinizing the Impact of Substitution Sites on Thermostability and Detergent Tolerance for Bacillus subtilis Lipase A

热稳定性 蛋白质工程 枯草芽孢杆菌 生化工程 计算生物学 计算机科学 脂肪酶 比例(比率) 理论(学习稳定性) 化学 生物技术 生物系统 数据挖掘 生物 生物化学 机器学习 工程类 遗传学 物理 细菌 量子力学
作者
Christina Nutschel,Alexander Fulton,Olav Zimmermann,Ulrich Schwaneberg,Karl‐Erich Jaeger,Holger Gohlke
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (3): 1568-1584 被引量:25
标识
DOI:10.1021/acs.jcim.9b00954
摘要

Improving an enzyme's (thermo-)stability or tolerance against solvents and detergents is highly relevant in protein engineering and biotechnology. Recent developments have tended toward data-driven approaches, where available knowledge about the protein is used to identify substitution sites with high potential to yield protein variants with improved stability, and subsequently, substitutions are engineered by site-directed or site-saturation (SSM) mutagenesis. However, the development and validation of algorithms for data-driven approaches have been hampered by the lack of availability of large-scale data measured in a uniform way and being unbiased with respect to substitution types and locations. Here, we extend our knowledge on guidelines for protein engineering following a data-driven approach by scrutinizing the impact of substitution sites on thermostability or/and detergent tolerance for Bacillus subtilis lipase A (BsLipA) at very large scale. We systematically analyze a complete experimental SSM library of BsLipA containing all 3439 possible single variants, which was evaluated as to thermostability and tolerances against four detergents under respectively uniform conditions. Our results provide systematic and unbiased reference data at unprecedented scale for a biotechnologically important protein, identify consistently defined hot spot types for evaluating the performance of data-driven protein-engineering approaches, and show that the rigidity theory and ensemble-based approach Constraint Network Analysis yields hot spot predictions with an up to ninefold gain in precision over random classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四爷发布了新的文献求助10
刚刚
66发布了新的文献求助10
刚刚
刚刚
刚刚
胖虎不胖发布了新的文献求助10
1秒前
1秒前
cjq发布了新的文献求助10
2秒前
2秒前
CYC发布了新的文献求助30
3秒前
John完成签到,获得积分10
3秒前
大意发布了新的文献求助30
3秒前
chj完成签到 ,获得积分20
3秒前
4秒前
fe999完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
6秒前
sjh发布了新的文献求助10
6秒前
Swift168_YY发布了新的文献求助10
6秒前
6秒前
汉堡包应助董小天天采纳,获得10
6秒前
xgx984发布了新的文献求助10
7秒前
攀登发布了新的文献求助10
7秒前
希望天下0贩的0应助hehehe采纳,获得10
7秒前
科研通AI5应助科研执修采纳,获得10
7秒前
Summer_Xia完成签到 ,获得积分0
7秒前
汉堡包应助cjq采纳,获得10
8秒前
隐形曼青应助helllxi采纳,获得30
9秒前
所所应助如意海豚采纳,获得10
9秒前
英姑应助灰灰采纳,获得10
10秒前
乔乔发布了新的文献求助10
10秒前
10秒前
不倦应助酸萝卜采纳,获得10
12秒前
塔菲尔完成签到 ,获得积分10
12秒前
贪玩的誉发布了新的文献求助10
13秒前
13秒前
完美麦片完成签到,获得积分10
14秒前
无花果应助STAN采纳,获得10
14秒前
丘比特应助66采纳,获得10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794036
求助须知:如何正确求助?哪些是违规求助? 3338945
关于积分的说明 10293257
捐赠科研通 3055500
什么是DOI,文献DOI怎么找? 1676694
邀请新用户注册赠送积分活动 804637
科研通“疑难数据库(出版商)”最低求助积分说明 762015