MEMS piezoelectric micro power harvester physical parameter optimization, simulation, and fabrication for extremely low frequency and low vibration level applications

田口方法 多物理 压电 材料科学 振动 声学 微电子机械系统 电子工程 工程类 光电子学 复合材料 有限元法 结构工程 物理
作者
Mohd H. S. Alrashdan
标识
DOI:10.1016/j.mejo.2020.104894
摘要

In the last decade, the Piezoelectric Micro Power Harvesters (PMPH) has had a significant attention to produce self-powered small electronic devices at high frequency range. This paper discusses the effects of the PMPH control factor on the PMPH performances including Electric Energy Density and the Normal Electric Field using Taguchi optimization method. Furthermore, the study uses the ANOVA test and the Multivariable linear Regression model to confirm the Taguchi method. Also, it studies the PMPH with optimal control factor simulate through COMSOL Multiphysics 5.4 software. Then, it studies the PMPH first resonance frequency mode with Eigen-Frequency analysis. Moreover, the PMPH performances simulate in time domain through the transient analysis. Therefore, the PMPH is fabricated; it uses silicon substrate coated on both sides with a silicon nitride insulation layer, piezoelectric material is deposited on top of the insulation layer using the RF sputtering technique, the interdigitated gold electrodes (IDEs) are deposited using the DC sputtering, and a proof mass is used to lower the resonance frequency. Furthermore, the fabricated PMPH will be tested with base shaker experiment. Taguchi, ANOVA, and multivariable linear regression analyses results confirm each other. The paper concludes that the piezoelectric material, piezoelectric layer thickness, and silicon membrane thickness are the most three-factors influence the PMPH performances at low vibration levels and extremely low frequency about 1.2 Hz. On the other hand, the piezoelectric layer width and insulator width are the lowest control factors affect the PMPH performances. The PMPH with an optimum parameters simulation results as following, it vibrates at 2.59 Hz with an acceleration magnitude of 0.9 g and the maximum electric energy density of 400 Jm−3. The fabricated PMPH vibrates at the first resonance frequency of 1.2 Hz with acceleration magnitude of 0.9 g. Also, the study finds out that the optimum loading resister of 200 KΩ is found, associated with open-circuit voltage of 18.52 Vp−p. Also, the PMPH produces a maximum electric output power of 135 μW and maximum electric power density of 26.1 mWCm−3. The PMPH Simulation and fabrication results support each other and they demonstrate that the proposed PMPH can work probably at low vibration levels and at extremely low frequency about 1 Hz. Which makes the PMPH suitable for powering small electronic devices, such as cardiac pacemakers and other small medical implants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hx完成签到,获得积分10
刚刚
gentille发布了新的文献求助10
刚刚
领导范儿应助fixit采纳,获得10
1秒前
2秒前
2秒前
Jamie发布了新的文献求助10
2秒前
范大大完成签到,获得积分10
3秒前
Jasper应助my采纳,获得10
3秒前
李俊枫发布了新的文献求助10
3秒前
不羁完成签到 ,获得积分10
3秒前
4秒前
尔玉完成签到 ,获得积分10
4秒前
明理的凌旋完成签到,获得积分10
4秒前
4秒前
所所应助姚姚采纳,获得10
4秒前
5秒前
小小小西关注了科研通微信公众号
5秒前
小皮猪发布了新的文献求助10
5秒前
研友_VZG7GZ应助forever采纳,获得10
5秒前
7秒前
幽默绿草发布了新的文献求助10
8秒前
且听风吟发布了新的文献求助10
8秒前
苏栀发布了新的文献求助10
8秒前
冰魂应助圆彰七大采纳,获得10
8秒前
聪明的行云完成签到 ,获得积分10
9秒前
liu发布了新的文献求助10
9秒前
SL发布了新的文献求助10
9秒前
马钰林关注了科研通微信公众号
10秒前
酷波er应助酷酷阑香采纳,获得10
10秒前
小刘完成签到,获得积分20
10秒前
ajiwjn完成签到,获得积分10
11秒前
香蕉觅云应助碧蓝世立采纳,获得10
11秒前
NexusExplorer应助1234采纳,获得10
13秒前
科研通AI5应助拼搏的潘子采纳,获得10
14秒前
炙热的雨双完成签到 ,获得积分10
14秒前
后陡门的夏完成签到,获得积分10
14秒前
14秒前
123完成签到,获得积分10
16秒前
fredfqk发布了新的文献求助20
17秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842060
求助须知:如何正确求助?哪些是违规求助? 3384246
关于积分的说明 10533237
捐赠科研通 3104526
什么是DOI,文献DOI怎么找? 1709680
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773957