Nomograms for prediction of overall and cancer-specific survival in young breast cancer

癌症 危险系数 队列 置信区间 逻辑回归 生存分析 多元分析
作者
Yi Sun,Yuqiang Li,Jiarui Wu,Huan Tian,Huanhuan Liu,Yingqing Fang,Yudong Li,Fang Yu
出处
期刊:Breast Cancer Research and Treatment [Springer Science+Business Media]
卷期号:184 (2): 597-613 被引量:12
标识
DOI:10.1007/s10549-020-05870-5
摘要

To assess the prognostic risk factors and establish prognostic nomograms based on lymph node ratio (LNR) to predict the survival of young patients with breast cancer (BC). Patients aged < 40 years and diagnosed with BC between 2010 and 2016 from the Surveillance, Epidemiology and End Results database were assessed. Nomograms incorporating LNR were constructed to predict overall survival (OS) and breast cancer-specific survival (BCSS) based on Cox proportional hazards model. The performance of the nomograms was assessed by C-index, calibration curves, receiver operating characteristic (ROC) curves, decision curve analysis (DCA), and risk group stratification and compared with the TNM staging system. Based on the univariate and multivariate Cox regression analysis, significant prognostic factors were identified and integrated to create the nomograms for OS and BCSS. The calibration curves indicated optimal agreement between model predictions and actual observations. The nomograms showed favorable sensitivity with a C-index of 0.8351 (95% CI 0.8234–0.8469) for OS and 0.8474 (95% CI 0.8355–0.8594) for BCSS. The ROC curves of the nomograms showed better predictive ability than those of the TNM staging system for OS (AUC: 0.8503 vs. 0.7819) and BSCC (AUC: 0.8607 vs. 0.8081). Significant differences in Kaplan–Meier curves were observed in patients stratified into different risk groups (p < 0.001). These nomograms provided more accurate individualized risk prediction of OS and BCSS and may assist clinicians in making decisions for young patients with BC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼鱼发布了新的文献求助10
刚刚
史克珍香完成签到 ,获得积分10
1秒前
夏青荷发布了新的文献求助10
3秒前
柚子完成签到 ,获得积分10
4秒前
时生完成签到 ,获得积分10
4秒前
坚强的铅笔完成签到 ,获得积分10
6秒前
JamesPei应助AlanLi采纳,获得10
7秒前
gyl完成签到 ,获得积分10
8秒前
OCDer应助Bonnienuit采纳,获得200
16秒前
ajiduo完成签到 ,获得积分10
17秒前
个性惜蕊完成签到,获得积分10
23秒前
JOJO应助优美的未来采纳,获得10
27秒前
合适的寄灵完成签到 ,获得积分10
30秒前
风中的向卉完成签到 ,获得积分10
31秒前
31秒前
研友_RLNzvL完成签到,获得积分10
34秒前
shenglll完成签到 ,获得积分10
34秒前
zhx245259630完成签到,获得积分10
35秒前
2010完成签到,获得积分10
38秒前
40秒前
sganthem完成签到,获得积分10
40秒前
想上985完成签到 ,获得积分10
42秒前
AlanLi发布了新的文献求助10
43秒前
鱼鱼完成签到,获得积分10
46秒前
AlanLi完成签到,获得积分10
49秒前
tkbxa完成签到 ,获得积分10
51秒前
净禅完成签到 ,获得积分10
53秒前
鹏826完成签到 ,获得积分10
54秒前
tlh完成签到 ,获得积分10
55秒前
喜悦宫苴完成签到,获得积分10
58秒前
多情盼雁关注了科研通微信公众号
1分钟前
故里完成签到,获得积分10
1分钟前
wangrblzu应助he采纳,获得10
1分钟前
wangrblzu应助he采纳,获得10
1分钟前
科研通AI2S应助he采纳,获得10
1分钟前
英姑应助he采纳,获得10
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840884
求助须知:如何正确求助?哪些是违规求助? 3382770
关于积分的说明 10526565
捐赠科研通 3102659
什么是DOI,文献DOI怎么找? 1708933
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773632