原肌球蛋白
肌动蛋白
蛋白质丝
生物物理学
生物
肌动蛋白重塑
MDia1公司
微丝
踏步
肌动蛋白细胞骨架
细胞生物学
细胞骨架
生物化学
细胞
作者
Dmitri Tolkatchev,Garry E. Smith,Lauren E. Schultz,Mert Colpan,Gregory L. Helms,John Cort,Carol C. Gregorio,Alla S. Kostyukova
出处
期刊:PLOS Biology
[Public Library of Science]
日期:2020-09-08
卷期号:18 (9): e3000848-e3000848
被引量:23
标识
DOI:10.1371/journal.pbio.3000848
摘要
Improper lengths of actin-thin filaments are associated with altered contractile activity and lethal myopathies. Leiomodin, a member of the tropomodulin family of proteins, is critical in thin filament assembly and maintenance; however, its role is under dispute. Using nuclear magnetic resonance data and molecular dynamics simulations, we generated the first atomic structural model of the binding interface between the tropomyosin-binding site of cardiac leiomodin and the N-terminus of striated muscle tropomyosin. Our structural data indicate that the leiomodin/tropomyosin complex only forms at the pointed end of thin filaments, where the tropomyosin N-terminus is not blocked by an adjacent tropomyosin protomer. This discovery provides evidence supporting the debated mechanism where leiomodin and tropomodulin regulate thin filament lengths by competing for thin filament binding. Data from experiments performed in cardiomyocytes provide additional support for the competition model; specifically, expression of a leiomodin mutant that is unable to interact with tropomyosin fails to displace tropomodulin at thin filament pointed ends and fails to elongate thin filaments. Together with previous structural and biochemical data, we now propose a molecular mechanism of actin polymerization at the pointed end in the presence of bound leiomodin. In the proposed model, the N-terminal actin-binding site of leiomodin can act as a "swinging gate" allowing limited actin polymerization, thus making leiomodin a leaky pointed-end cap. Results presented in this work answer long-standing questions about the role of leiomodin in thin filament length regulation and maintenance.
科研通智能强力驱动
Strongly Powered by AbleSci AI