Automated Lung Ultrasound B-Line Assessment Using a Deep Learning Algorithm

超声波 卷积神经网络 人工智能 卡帕 算法 置信区间 医学 机器学习 肺超声 计算机科学 深度学习 直线(几何图形) 放射科 内科学 数学 几何学
作者
Cristiana Baloescu,Grzegorz Toporek,Seungsoo Kim,Katelyn McNamara,Rachel Liu,Melissa Shaw,Robert L. McNamara,Balasundar I. Raju,Christopher L. Moore
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:67 (11): 2312-2320 被引量:107
标识
DOI:10.1109/tuffc.2020.3002249
摘要

Shortness of breath is a major reason that patients present to the emergency department (ED) and point-of-care ultrasound (POCUS) has been shown to aid in diagnosis, particularly through evaluation for artifacts known as B-lines. B-line identification and quantification can be a challenging skill for novice ultrasound users, and experienced users could benefit from a more objective measure of quantification. We sought to develop and test a deep learning (DL) algorithm to quantify the assessment of B-lines in lung ultrasound. We utilized ultrasound clips (n = 400) from an existing database of ED patients to provide training and test sets to develop and test the DL algorithm based on deep convolutional neural networks. Interpretations of the images by algorithm were compared to expert human interpretations on binary and severity (a scale of 0- 4) classifications. Our model yielded a sensitivity of 93% (95% confidence interval (CI) 81%-98%) and a specificity of 96% (95% CI 84%-99%) for the presence or absence of B-lines compared to expert read, with a kappa of 0.88 (95% CI 0.79-0.97). Model to expert agreement for severity classificationyielded a weighted kappa of 0.65(95% CI 0.56- 074). Overall, the DL algorithm performed well and could be integrated into an ultrasound system in order to help diagnose and track B-line severity. The algorithm is better at distinguishing the presence from the absence of B-lines but can also be successfully used to distinguish between B-line severity. Such methods could decrease variabilityand provide a standardized method for improved diagnosis and outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kilion发布了新的文献求助10
刚刚
大模型应助HUANWANG采纳,获得10
刚刚
刚刚
1秒前
1秒前
YChenCui发布了新的文献求助10
1秒前
冰冰双双完成签到,获得积分10
1秒前
山大琦子完成签到,获得积分10
2秒前
2秒前
拉长的沛芹完成签到,获得积分10
2秒前
欢喜念双发布了新的文献求助10
2秒前
华仔应助黄紫红蓝采纳,获得10
3秒前
TTOM完成签到,获得积分10
3秒前
房LY发布了新的文献求助10
3秒前
511发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
DQ完成签到,获得积分10
4秒前
5秒前
静静发布了新的文献求助10
5秒前
Leah完成签到 ,获得积分10
5秒前
星星发布了新的文献求助10
6秒前
一叶知秋应助WTaMi采纳,获得10
6秒前
6秒前
YANer完成签到,获得积分10
6秒前
6秒前
7秒前
griffon完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
李爱国应助hyx采纳,获得10
8秒前
邵邵完成签到,获得积分10
8秒前
微笑晓丝发布了新的文献求助10
8秒前
00000完成签到,获得积分10
9秒前
自闭怪完成签到,获得积分20
9秒前
9秒前
10秒前
孙一完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Revision of the Australian Thynnidae and Tiphiidae (Hymenoptera) 500
Instant Bonding Epoxy Technology 500
Pipeline Integrity Management Under Geohazard Conditions (PIMG) 500
Methodology for the Human Sciences 500
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4363001
求助须知:如何正确求助?哪些是违规求助? 3863380
关于积分的说明 12048493
捐赠科研通 3506115
什么是DOI,文献DOI怎么找? 1923769
邀请新用户注册赠送积分活动 966050
科研通“疑难数据库(出版商)”最低求助积分说明 865475