Porosity in Aluminum Alloys

多孔性 材料科学 扩散 曲率 冶金 限制 收缩率 成核 机械 热力学 复合材料 化学 几何学 机械工程 数学 工程类 物理 有机化学
作者
M. Felberbaum
标识
DOI:10.5075/epfl-thesis-4639
摘要

Porosity is one of the major defects in castings because it reduces the mechanical properties of a cast piece [1]. Porosity formation results from the effect of two concomitant mechanisms, namely solidification shrinkage and segregation/precipitation of gases [1]. A model for the prediction of microporosity, macroporosity and pipe shrinkage during the solidification of alloys has been developed at the Computational Materials Laboratory (LSMX-EPFL) [2]. This model has then been improved by taking into account the effect of various alloying elements and gases on porosity formation [3, 4, 5]. However, the modeling of two physical phenomena still needed to be improved: (i) the curvature influence and (ii) the hydrogen diffusion influence on the growth of pores. The effect of pinching, i.e. the pores are forced by the growing solid network to adopt a complex non spherical shape, induces curvature restriction to the pores. This pinching effect can be a limiting factor for the growth of pores and is too simply modeled in the model of Pequet et al. [2]. Several other pinching models exist, but a rigorous experimental study to validate either one of these models is needed. Additionally, Carlson et al. [6] have recently shown that hydrogen diffusion might also be a limiting factor for the growth of pores. In the model of Pequet et al. [2], this effect was not taken into account. This thesis is mainly aimed to (i) provide experimental results that specifically validate the pinching model developed by Couturier et al. [4], (ii) investigate the influence of hydrogen diffusion on the growth of pores and (iii) provide a new model that takes into account the pinching effect and the hydrogen diffusion influence on the growth of pores. At first, pores formed in aluminum-copper (Al-Cu) samples (cast under controlled conditions) have been analyzed using high resolution X-ray tomography. The influence of the alloy inoculant, copper content, cooling rate and initial hydrogen content on the morphology of pores has been investigated. The results show that the curvature of micropores pinched in either non-inoculated or inoculated Al-4.5wt%Cu alloys can be fairly well approximated to that of cylinders. The results also show that the pinching model must be function of (i) the volume fraction of the primary phase gα and (ii) the secondary dendrite arm spacing λ2. However, the influence of the initial hydrogen content appears to be negligible. The pinching model developed by Couturier et al. [4] accounts for these observations and their relation fits fairly well the average mean curvature value of our experimental data. A new model has been developed to calculate an effective hydrogen diffusion coefficient De(gs), that is a function of the volume fraction of solid only. For that purpose, in-situ X-ray tomography has been performed on Al-Cu alloys. For each volume fraction of solid 0.6 ≤ gs ≤ 0.9, a representative volume element of the microstructure has been obtained from the tomography data. Solid and liquid voxels being assimilated to solid and liquid nodes respectively, a hydrogen diffusion equation has then been solved numerically. Calculations have been run until steady-state was reached in order to deduce De(gs) and the simulation results were successfully compared with a new theory based on effective-medium approximations. Both approaches lead to the main conclusion that hydrogen diffusion through the solid phase cannot be neglected, unlike it is assumed in the model of Carlson et al. [6]. Next, using the pinching model of Couturier et al. [4] and the obtained De(gs), a new volume-averaged model has been developed in order to simulate the growth of pores limited by (i) the curvature of the pore phase and (ii) the diffusion of hydrogen. The results show that, although hydrogen diffusion can be a limiting factor for the growth of pores, the pinching effect has a much larger influence. Accordingly, any model for porosity prediction should carefully take into account the influence of curvature and hydrogen diffusion on the growth of pores. In order to ripen this study at a refined scale, a 2D phase-field model has been developed to describe the complex shape of a pore formed within interdendritic liquid channels [7]. The influence of the solid, which can force the pore to adopt a non-spherical shape, is taken into account through the geometry of the domain and appropriate boundary conditions. This model accounts for curvature influence and hydrogen diffusion in the liquid, two of the main aspects governing the growth kinetics of a pore. However, the model still needs to be combined with a description of the liquid flow induced by the pore growth. Basically, this model should serve as a sound basis for further developments that might lead to more sophisticated pinching models. Finally, an experimental study has been conducted in order to track the inoculant influence on the shape of pipe shrinkage. Simultaneously, pipe shrinkage calculations (using the model of Pequet et al. [2]) were performed in order to track the influence of the gs,c parameter on the shape of the pipe shrinkage. This gs,c parameter corresponds to the critical volume fraction of solid at which mass feeding stops. Comparisons between experimental and simulation results show that the gs,c parameter should be set equal to 0.6 or 0.1 for a casting simulation of an inoculated or non-inoculated alloy, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助哈噗咻采纳,获得10
刚刚
2秒前
阿衡完成签到,获得积分10
2秒前
3秒前
3秒前
刘慧鑫完成签到,获得积分10
4秒前
Lucas应助王宁采纳,获得10
5秒前
6秒前
Hello应助ojbk采纳,获得10
6秒前
小小fa完成签到 ,获得积分10
7秒前
善学以致用应助牛姐采纳,获得10
7秒前
8秒前
萨瓦迪卡完成签到 ,获得积分10
9秒前
科目三应助fan采纳,获得30
9秒前
9秒前
小马甲应助结实的小猫咪采纳,获得10
9秒前
刘慧鑫发布了新的文献求助10
10秒前
Orange应助BGa采纳,获得10
10秒前
ZM完成签到,获得积分10
10秒前
pluto应助鲜于雁山采纳,获得10
11秒前
11秒前
aldehyde应助季承渊采纳,获得10
11秒前
12秒前
heli发布了新的文献求助10
12秒前
14秒前
在水一方应助小伙子采纳,获得10
14秒前
15秒前
浮游应助limi采纳,获得10
15秒前
15秒前
虚心若山完成签到,获得积分10
16秒前
科研通AI6应助冷不丁采纳,获得10
16秒前
李健应助高贵振家采纳,获得10
16秒前
16秒前
lcc完成签到,获得积分20
16秒前
16秒前
Rae发布了新的文献求助30
17秒前
18秒前
成就钧发布了新的文献求助10
18秒前
彩色鹏煊完成签到,获得积分20
19秒前
今后应助早日发sci采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350956
求助须知:如何正确求助?哪些是违规求助? 4484183
关于积分的说明 13958360
捐赠科研通 4383653
什么是DOI,文献DOI怎么找? 2408548
邀请新用户注册赠送积分活动 1401137
关于科研通互助平台的介绍 1374584