亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

From Mechanism to Mouse: A Tale of Two Bioorthogonal Reactions

生物正交化学 反应性(心理学) 化学 叠氮化物 组合化学 生物分子 叶立德 生物结合 施陶丁格反应 生物相容性材料 惰性 功能群 水介质 机制(生物学) 纳米技术 生物化学 环加成 化学生物学 生物物理学 水溶液 有机化学 点击化学 催化作用 材料科学 哲学 替代医学 认识论 病理 生物医学工程 聚合物 医学
作者
Ellen M. Sletten,Carolyn R. Bertozzi
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:44 (9): 666-676 被引量:857
标识
DOI:10.1021/ar200148z
摘要

Bioorthogonal reactions are chemical reactions that neither interact with nor interfere with a biological system. The participating functional groups must be inert to biological moieties, must selectively reactive with each other under biocompatible conditions, and, for in vivo applications, must be nontoxic to cells and organisms. Additionally, it is helpful if one reactive group is small and therefore minimally perturbing of a biomolecule into which it has been introduced either chemically or biosynthetically. Examples from the past decade suggest that a promising strategy for bioorthogonal reaction development begins with an analysis of functional group and reactivity space outside those defined by Nature. Issues such as stability of reactants and products (particularly in water), kinetics, and unwanted side reactivity with biofunctionalities must be addressed, ideally guided by detailed mechanistic studies. Finally, the reaction must be tested in a variety of environments, escalating from aqueous media to biomolecule solutions to cultured cells and, for the most optimized transformations, to live organisms.Work in our laboratory led to the development of two bioorthogonal transformations that exploit the azide as a small, abiotic, and bioinert reaction partner: the Staudinger ligation and strain-promoted azide–alkyne cycloaddition. The Staudinger ligation is based on the classic Staudinger reduction of azides with triarylphosphines first reported in 1919. In the ligation reaction, the intermediate aza-ylide undergoes intramolecular reaction with an ester, forming an amide bond faster than aza-ylide hydrolysis would otherwise occur in water. The Staudinger ligation is highly selective and reliably forms its product in environs as demanding as live mice. However, the Staudinger ligation has some liabilities, such as the propensity of phosphine reagents to undergo air oxidation and the relatively slow kinetics of the reaction.The Staudinger ligation takes advantage of the electrophilicity of the azide; however, the azide can also participate in cycloaddition reactions. In 1961, Wittig and Krebs noted that the strained, cyclic alkyne cyclooctyne reacts violently when combined neat with phenyl azide, forming a triazole product by 1,3-dipolar cycloaddition. This observation stood in stark contrast to the slow kinetics associated with 1,3-dipolar cycloaddition of azides with unstrained, linear alkynes, the conventional Huisgen process. Notably, the reaction of azides with terminal alkynes can be accelerated dramatically by copper catalysis (this highly popular Cu-catalyzed azide–alkyne cycloaddition (CuAAC) is a quintessential “click” reaction). However, the copper catalysts are too cytotoxic for long-term exposure with live cells or organisms. Thus, for applications of bioorthogonal chemistry in living systems, we built upon Wittig and Krebs’ observation with the design of cyclooctyne reagents that react rapidly and selectively with biomolecule-associated azides. This strain-promoted azide–alkyne cycloaddition is often referred to as “Cu-free click chemistry”. Mechanistic and theoretical studies inspired the design of a series of cyclooctyne compounds bearing fluorine substituents, fused rings, and judiciously situated heteroatoms, with the goals of optimizing azide cycloaddition kinetics, stability, solubility, and pharmacokinetic properties. Cyclooctyne reagents have now been used for labeling azide-modified biomolecules on cultured cells and in live Caenorhabditis elegans, zebrafish, and mice.As this special issue testifies, the field of bioorthogonal chemistry is firmly established as a challenging frontier of reaction methodology and an important new instrument for biological discovery. The above reactions, as well as several newcomers with bioorthogonal attributes, have enabled the high-precision chemical modification of biomolecules in vitro, as well as real-time visualization of molecules and processes in cells and live organisms. The consequence is an impressive body of new knowledge and technology, amassed using a relatively small bioorthogonal reaction compendium. Expansion of this toolkit, an effort that is already well underway, is an important objective for chemists and biologists alike.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
41秒前
ZaZa完成签到,获得积分10
48秒前
NOTHING完成签到 ,获得积分10
50秒前
霍霍完成签到 ,获得积分10
53秒前
petrichor完成签到 ,获得积分10
1分钟前
隐形曼青应助想飞的兔子采纳,获得10
1分钟前
1分钟前
petrichor完成签到 ,获得积分10
1分钟前
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
牛八先生完成签到,获得积分10
2分钟前
Elvira完成签到,获得积分10
2分钟前
Yating发布了新的文献求助10
2分钟前
羞涩的元彤完成签到 ,获得积分10
2分钟前
2分钟前
在水一方应助科研通管家采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
星辰大海应助九日采纳,获得200
3分钟前
Yating完成签到,获得积分10
3分钟前
4分钟前
无风发布了新的文献求助10
4分钟前
4分钟前
夜话风陵杜完成签到 ,获得积分0
4分钟前
4分钟前
执着的un琪完成签到 ,获得积分10
4分钟前
Unlisted发布了新的文献求助20
4分钟前
量子星尘发布了新的文献求助10
4分钟前
好巧完成签到,获得积分10
5分钟前
Bosen完成签到,获得积分10
5分钟前
花花完成签到,获得积分10
5分钟前
3080完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4235765
求助须知:如何正确求助?哪些是违规求助? 3769229
关于积分的说明 11840528
捐赠科研通 3426600
什么是DOI,文献DOI怎么找? 1880505
邀请新用户注册赠送积分活动 933128
科研通“疑难数据库(出版商)”最低求助积分说明 840055