可积系统
无色散方程
Camassa–Holm方程
数学
Korteweg–de Vries方程
守恒定律
辛几何
哈密顿量(控制论)
松驰对
数学物理
哈密顿系统
Kadomtsev–Petviashvili方程
非线性系统
偏微分方程
齐次空间
数学分析
伯格斯方程
物理
量子力学
几何学
数学优化
摘要
A method of analysis of the infinite-dimensional Hamiltonian equations which avoids the introduction of the Bäcklund transformation or the use of the Lax equation is suggested. This analysis is based on the possibility of connecting in several ways the conservation laws of special Hamiltonian equations with their symmetries by using symplectic operators. It leads to a simple and sufficiently general model of integrable Hamiltonian equation, of which the Korteweg–de Vries equation, the modified Korteweg–de Vries equation, the nonlinear Schrödinger equation and the so-called Harry Dym equation turn out to be particular examples.
科研通智能强力驱动
Strongly Powered by AbleSci AI