流行病模型
持久性(不连续性)
基本再生数
数学
反应扩散系统
消光(光学矿物学)
常量(计算机编程)
人口
统计物理学
扩散
传输(电信)
流行病
数学分析
应用数学
人口学
计算机科学
生物
物理
病毒学
社会学
热力学
古生物学
电信
岩土工程
工程类
程序设计语言
作者
Rui Peng,Xiao‐Qiang Zhao
出处
期刊:Nonlinearity
[IOP Publishing]
日期:2012-04-13
卷期号:25 (5): 1451-1471
被引量:290
标识
DOI:10.1088/0951-7715/25/5/1451
摘要
In this paper, we consider a susceptible–infected–susceptible (SIS) reaction–diffusion model, where the rates of disease transmission and recovery are assumed to be spatially heterogeneous and temporally periodic and the total population number is constant. We introduce a basic reproduction number and establish threshold-type results on the global dynamics in terms of . In particular, we obtain the asymptotic properties of with respect to the diffusion rate dI of the infected individuals, which exhibit the delicate influence of the time-periodic heterogeneous environment on the extinction and persistence of the infectious disease. Our analytical results suggest that the combination of spatial heterogeneity and temporal periodicity tends to enhance the persistence of the disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI