清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Sequential Sponsored-Products and Off-Amazon Advertising Optimization for Etailers

作者
Yina Ning,Yangyang Xie,Houmin Yan
出处
期刊:Production and Operations Management [Wiley]
标识
DOI:10.1177/10591478261415690
摘要

Sponsored-Products (SP) advertising is a popular way to promote products on Amazon. Etailers who have a large catalog of products often create SP ad groups for products with similar attributes. An SP ad group consists of a set of products and a set of keywords, and all the products in the ad group share the same keyword set. These keywords are the ones that shoppers may search for when looking for products on Amazon. In addition to SP ads, etailers may link to external websites for advertising their products, which is called off-Amazon (OA) ads. This study focuses on the optimization of sequential SP and OA (abbreviated as SSPOA) ads decisions for etailers. Practically, many etailers set sales targets for products as manufacturing and logistics are planned ahead of time. Hence, we consider the etailer’s objective as minimizing the expected long-run average cost incurred by advertising and cumulative unmet sales target. We model the SSPOA optimization as a controlled Markovian multi-armed bandit (MAB) process. When the mean of the sales number per unit time (i.e., sales rate) for each product is known, we characterize the etailer’s optimal SSPOA policy for products in an ad group. In reality, etailers may not know the exact means of sales rates. To learn the unknown parameters while simultaneously minimizing the long-run average cost, we develop a Thompson-sampling-based algorithm for the controlled Markovian MAB problem that couples the SP and OA ads decisions. We prove that the regret bound of the proposed algorithm is O ~ ( T ) , where T is the total horizon length. Compared with existing literature, our problem additionally considers the regret from applying the estimated control policy and the impacts of choosing non-optimal keyword sets on subsequent states. We also conduct numerical experiments that validate our theoretical results. Moreover, we extend the base model in several directions, i.e., considering unknown transition rates between different sales rate levels, incorporating correlated keyword sets, and learning the optimal policy using Posterior Sampling for Reinforcement Learning under a discretized setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
乐乐应助另一种蓝色采纳,获得10
17秒前
thl发布了新的文献求助10
20秒前
45秒前
切尔顿发布了新的文献求助10
48秒前
泽锦臻完成签到,获得积分10
56秒前
1分钟前
1分钟前
拾玖发布了新的文献求助10
1分钟前
zzmm发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
小盼虫发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小蘑菇应助眯眯眼的山柳采纳,获得10
1分钟前
丘比特应助另一种蓝色采纳,获得10
1分钟前
两个榴莲完成签到,获得积分0
1分钟前
叶子完成签到 ,获得积分0
2分钟前
Levent完成签到,获得积分10
2分钟前
2分钟前
大医仁心完成签到 ,获得积分10
2分钟前
xiawanren00完成签到,获得积分10
2分钟前
2分钟前
小青加油发布了新的文献求助10
2分钟前
淡然绝山发布了新的文献求助10
2分钟前
2分钟前
小青加油完成签到,获得积分10
2分钟前
Petrichor完成签到,获得积分10
2分钟前
2分钟前
徐徐完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
柚子完成签到 ,获得积分10
3分钟前
充电宝应助李小猫采纳,获得10
3分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5747039
求助须知:如何正确求助?哪些是违规求助? 5441746
关于积分的说明 15356150
捐赠科研通 4887004
什么是DOI,文献DOI怎么找? 2627560
邀请新用户注册赠送积分活动 1575975
关于科研通互助平台的介绍 1532815