Deep radiomics for prognostic prediction in locally advanced non-small cell lung cancer by leveraging OmicsMap-based image representation.

无线电技术 医学 比例危险模型 卷积神经网络 肺癌 特征(语言学) 人工智能 接收机工作特性 危险系数 放射科 数据集 生存分析 癌症 预测模型 队列 肿瘤科 深度学习 总体生存率 特征提取 特征选择 模式识别(心理学) 列线图 医学影像学 计算机断层摄影术 置信区间 回顾性队列研究 人工神经网络 计算机科学 文本挖掘
作者
Runping Hou,Wuyan Xia,Md Tauhidul Islam,X Zhu,Yan Shao,Zhi Yong Xu,Xuwei Cai,Xuejun Gu,X. Fu,Lei Xing
出处
期刊:PubMed
标识
DOI:10.1088/1361-6560/ae3b94
摘要

Patients with locally advanced non-small cell lung cancer (LA-NSCLC) exhibit heterogeneous prognoses despite receiving standard treatments, highlighting the need for more reliable prognostic biomarkers. This study aims to develop and validate OmicsMap model, a deep radiomics biomarkers derived from computed tomography (CT) images for the prediction of progression-free survival (PFS) in LA-NSCLC patients. Approach: We retrospectively analyzed data from 329 LA-NSCLC patients who underwent definitive radiotherapy. The cohort was randomly divided into development (N=220) and independent testing set (N=109). The prognostic signature was derived from integrated radiomics features extracted from both the primary tumor and involved lymph nodes, and inter-patient radiomics feature interactions. To achieve this, high-dimensional radiomics data from all patients were transformed into structured 2D representations, termed OmicsMap, wherein radiomics feature interactions were encoded within the pixelated configuration. Deep radiomics features from the OmicsMaps were then extracted using a convolutional neural network for prognostic prediction. Model performance was evaluated by time-dependent area under the receiver operating characteristic curves (AUC). Kaplan-Meier (KM) curves were plotted and Hazard ratios (HR) were calculated via Cox proportional hazards model. Main results: The OmicsMap model achieved time-dependent AUCs of 0.76, 0.78 and 0.76 at 1, 2 and 3 years in the independent testing set, significantly outperforming the clinical model (AUC: 0.57, 0.57, 0.64; p < 0.05). The proposed model improved predictive discrimination with 7.69% increase in C-index over conventional radiomics approaches. It effectively stratified patients into high-risk and low-risk subgroups for both PFS (p < 0.001, HR = 0.380) and OS (p = 0.0021, HR = 0.525) in the testing set. Significance: The proposed OmicsMap model provides a novel paradigm for enhancing prognostic prediction in patients with LA-NSCLC. By improving risk stratification, the framework may help inform clinical decision-making and support future efforts toward more individualized management strategies. .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tonsil01发布了新的文献求助10
1秒前
2秒前
linyuping完成签到,获得积分20
2秒前
jian完成签到,获得积分10
2秒前
小小帆发布了新的文献求助30
3秒前
3秒前
周恒胜发布了新的文献求助10
5秒前
平贝花应助yliaoyou采纳,获得10
5秒前
5秒前
Jasper应助jian采纳,获得10
7秒前
ww发布了新的文献求助30
7秒前
9秒前
bym完成签到,获得积分10
10秒前
老福贵儿应助周恒胜采纳,获得10
10秒前
单身的忆南完成签到,获得积分10
11秒前
11秒前
西瓜完成签到,获得积分10
12秒前
科研通AI6应助阅月采纳,获得10
13秒前
gkhsdvkb发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
平贝花应助yliaoyou采纳,获得10
15秒前
LWC012766完成签到,获得积分10
16秒前
六六发布了新的文献求助10
16秒前
FashionBoy应助123采纳,获得10
17秒前
18秒前
18秒前
小盼虫发布了新的文献求助10
21秒前
酷波er应助santiago采纳,获得10
21秒前
TTLOVEDXX完成签到,获得积分10
21秒前
22秒前
英俊的铭应助凡凡采纳,获得10
22秒前
big ben完成签到 ,获得积分10
23秒前
愉快白亦完成签到,获得积分10
25秒前
西瓜翠衣完成签到,获得积分10
27秒前
传奇3应助努力的小天采纳,获得20
27秒前
29秒前
情怀应助小盼虫采纳,获得10
32秒前
Jasper应助Alvin采纳,获得10
34秒前
Hello应助六六采纳,获得10
34秒前
GYY发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685141
求助须知:如何正确求助?哪些是违规求助? 5041142
关于积分的说明 15186335
捐赠科研通 4844252
什么是DOI,文献DOI怎么找? 2597235
邀请新用户注册赠送积分活动 1549787
关于科研通互助平台的介绍 1508220