神经形态工程学
材料科学
磁滞
离子
光电子学
纳米技术
晶体管
非易失性存储器
电导
电容器
偏压
俘获
两性离子
化学物理
电化学
杠杆(统计)
介观物理学
磺酸盐
生物电子学
电压
离子电导率
柔性电子器件
逻辑门
静电学
快离子导体
层状结构
电容
聚合物
纳米晶
导电聚合物
超分子化学
有机电子学
有机半导体
作者
Junseo Kim,Won Jun Pyo,Syed Zahid Hassan,Hye Ryun Sim,Dae Sung Chung
标识
DOI:10.1002/adma.202519188
摘要
ABSTRACT Organic electrochemical transistors (OECTs) leverage the chemical tunability of polymeric semiconductors; however, their potential as memory devices remains constrained by insufficient ion retention. Previous studies on physical trapping of ions within polymer crystalline domains have generally reported memory windows below 5.3 V. Here, we achieve molecular‐level hysteresis control by designing a dual‐functional zwitterionic crosslinker that creates an electrostatic ion‐trapping channel. Its fixed anionic sulfonate group establishes a repulsive barrier to delay ion injection, while its cationic ammonium site forms a deep electrostatic trap that creates a 2.03 eV barrier, thereby stabilizing the doped state, and collectively producing pronounced hysteresis. GIWAXS under sequential biasing reveals reversible lamellar dynamics, enabled by ionic interactions among side‐chain‐tethered zwitterion units. The resulting OECTs achieve record hysteresis strength (96.4 V) and memory window (8.65 V) while maintaining an on/off ratio ∼10 6 and 86.4% conductance retention after 200,000 pulses. Moreover, the Z‐FPA scheme generalizes to other polymer semiconductors, providing a polymer‐agnostic route to high‐fidelity neuromorphic OECTs. Synaptic metrics are more symmetric; device‐informed models reach 92.87% on MNIST, and ECG reservoir computing confirms biosignal compatibility. Our findings provide key molecular insights into the material design and operating mechanisms critical for advancing next‐generation neuromorphic OECTs.
科研通智能强力驱动
Strongly Powered by AbleSci AI