异位表达
胶质1
生物
KLF4公司
转录因子
细胞生物学
赫斯1
分子生物学
基因表达
体内
药理学
HDAC3型
病理
内斯汀
癌症研究
结膜
非西汀
干细胞
作者
Xuming Zhu,Mingang Xu,David M. Owens,Sarah E. Millar
出处
期刊:Cells
[MDPI AG]
日期:2025-12-12
卷期号:14 (24): 1979-1979
标识
DOI:10.3390/cells14241979
摘要
Purpose: This study aims to investigate whether two stress keratins, KRT6A or KRT17, label self-renewing stem cells (SCs) in adult mouse Meibomian gland (MG), the palpebral conjunctiva (PC) homeostasis, and to explore the mechanisms regulating their expression. Methods: KRT6A and KRT17 expression in adult mouse MG and PC were examined by single-nucleus RNA sequencing and immunofluorescence (IF). Lineage-tracing experiments were performed using Krt6a-CreERT2 and Krt17-CreERT2 mice carrying the Rosa26RnTnG or Rosa26RmTmG reporter. As Hedgehog (Hh) signaling, the histone deacetylase HDAC3, and the transcription factor KLF4 regulate KRT6A and KRT17 in other contexts, IF was conducted to assess the in vivo effects of overexpression of the Hh pathway activator GLI2ΔN, and inducible epithelial deletion of Hdac3 or Klf4 on KRT6A and KRT17 expression in the MG and PC. Results: KRT6A and KRT17 are primarily expressed in the MG central duct and ductules. KRT6A also shows robust expression in PC. Lineage tracing indicated that Krt17 labels self-renewing SCs in the MG, whereas Krt6a labels SCs in the PC. GLI2ΔN overexpression induced ectopic KRT17 expression in MG acini and PC but did not affect KRT6A expression in either MG or PC. Hdac3 deficiency caused expanded expression of KRT6A and KRT17 in MG acini, ectopic KRT17 expression in PC, and increased KRT6A expression in PC basal layer. Klf4 deletion resulted in ectopic KRT17 expression in PC but did not influence KRT6A expression in MG or PC. Conclusions: Krt6a- and Krt17-expressing cells contribute to adult PC and MG homeostasis, respectively. KRT17 expression is enhanced by GLI2ΔN, and suppressed by HDAC3 and KLF4, whereas KRT6A expression is controlled only by HDAC3. These findings provide important biological insight into tissue-specific maintenance mechanisms and may inform future therapeutic strategies for regenerating MG and PC tissues affected by SC exhaustion or dysregulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI