Discrimination and conversion prediction of mild cognitive impairment using convolutional neural networks

卷积神经网络 认知障碍 计算机科学 认知 人工智能 机器学习 神经科学 心理学
作者
Congling Wu,Shengwen Guo,Yan-jia Hong,Ben‐Heng Xiao,Yu‐Peng Wu,Qin Zhang
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:8 (10): 992-1003 被引量:61
标识
DOI:10.21037/qims.2018.10.17
摘要

Recently, studies have demonstrated that machine learning techniques, particularly cutting-edge deep learning technology, have achieved significant progression on the classification of Alzheimer's disease (AD) and its prodromal phase, mild cognitive impairment (MCI). Moreover, accurate prediction of the progress and the conversion risk from MCI to probable AD has been of great importance in clinical application.In this study, the baseline MR images and follow-up information during 3 years of 150 normal controls (NC), 150 patients with stable MCI (sMCI) and 157 converted MCI (cMCI) were collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI). The deep convolutional neural networks (CNNs) were adopted to distinguish different stages of MCI from the NC group, and predict the conversion time from MCI to AD. Two CNN architectures including GoogleNet and CaffeNet were explored and evaluated in multiple classifications and estimations of conversion risk using transfer learning from pre-trained ImageNet (via fine-tuning) and five-fold cross-validation. A novel data augmentation approach using random views aggregation was applied to generate abundant image patches from the original MR scans.The GoogleNet acquired accuracies with 97.58%, 67.33% and 84.71% in three-way discrimination among the NC, sMCI and cMCI groups respectively, whereas the CaffeNet obtained promising accuracies of 98.71%, 72.04% and 92.35% in the NC, sMCI and cMCI classifications. Furthermore, the accuracy measures of conversion risk of patients with cMCI ranged from 71.25% to 83.25% in different time points using GoogleNet, whereas the CaffeNet achieved remarkable accuracy measures from 95.42% to 97.01% in conversion risk prediction.The experimental results demonstrated that the proposed methods had prominent capability in classification among the 3 groups such as sMCI, cMCI and NC, and exhibited significant ability in conversion risk prediction of patients with MCI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
TING发布了新的文献求助10
2秒前
kuoping完成签到,获得积分10
2秒前
隐形曼青应助打老虎采纳,获得30
4秒前
5秒前
zb发布了新的文献求助10
5秒前
6秒前
小二郎应助dirk采纳,获得10
6秒前
grisco发布了新的文献求助10
7秒前
7秒前
丘比特应助喜文采纳,获得10
8秒前
8秒前
hk1900发布了新的文献求助30
9秒前
10秒前
Nan发布了新的文献求助10
11秒前
12秒前
平家boy发布了新的文献求助10
12秒前
852应助zb采纳,获得10
12秒前
油柑美式完成签到,获得积分10
12秒前
乖小俏完成签到,获得积分10
13秒前
米粒儿发布了新的文献求助10
13秒前
14秒前
KEYAN完成签到,获得积分10
14秒前
14秒前
香蕉觅云应助cm采纳,获得10
14秒前
15秒前
15秒前
王圈完成签到,获得积分20
16秒前
17秒前
gg发布了新的文献求助10
17秒前
19秒前
19秒前
TING完成签到,获得积分20
19秒前
可爱的函函应助鳄鱼采纳,获得10
19秒前
无花果应助科研通管家采纳,获得10
19秒前
852应助科研通管家采纳,获得10
19秒前
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
19秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
A monograph of the genera Conocybe and Pholiotina in Europe 200
Clinical Observation and Analysis of Transient Postoperative CA-125 Elevation in a Patient with Sigmoid Colon Adenocarcinoma 200
The direct observation of dislocations 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836809
求助须知:如何正确求助?哪些是违规求助? 3379059
关于积分的说明 10507387
捐赠科研通 3098970
什么是DOI,文献DOI怎么找? 1706627
邀请新用户注册赠送积分活动 821137
科研通“疑难数据库(出版商)”最低求助积分说明 772445