Artificial Neural Network for in-Bed Posture Classification Using Bed-Sheet Pressure Sensors

仰卧位 人工智能 计算机科学 反向传播 人工神经网络 计算机视觉 模式识别(心理学) 一般化 数学 医学 数学分析 内科学
作者
Georges Matar,Jean‐Marc Lina,Georges Kaddoum
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (1): 101-110 被引量:113
标识
DOI:10.1109/jbhi.2019.2899070
摘要

Pressure ulcer prevention is a vital procedure for patients undergoing long-term hospitalization. A human body lying posture (HBLP) monitoring system is essential to reschedule posture change for patients. Video surveillance, the conventional method of HBLP monitoring, suffers from various limitations, such as subject's privacy, and field-of-view obstruction. We propose an autonomous method for classifying the four state-of-the-art HBLPs in healthy adults subjects: supine, prone, left and right lateral, with no sensors or cables attached on the body and no constraints imposed on the subject. Experiments have been conducted on 12 healthy adults (age 27.35 ± 5.39 years) using a collection of textile pressure sensors embedded in a cover placed under the bed sheet. Histogram of oriented gradients and local binary patterns were extracted and fed to a supervised artificial neural network classification model. The model was trained based on the scaled conjugate gradient backpropagation. A nested cross validation with an exhaustive outer validation loop was performed to validate the classification's generalization performance. A high testing prediction accuracy of 97.9% with a Cohen's Kappa coefficient of 97.2% has been interestingly obtained. Prone and supine postures were successfully separated in the classification, in contrast to the majority of previous similar works. We found that using the information of body weight distribution along with the shape and edges contributes to a better classification performance and the ability to separate supine and prone postures. The results are satisfactorily promising toward unobtrusively monitoring posture for ulcer prevention. The method can be used in sleep studies, post-surgical procedures, or applications requiring HBLP identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容的招牌完成签到,获得积分10
刚刚
想人陪的向南完成签到,获得积分20
1秒前
LL完成签到,获得积分20
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
LI电池发布了新的文献求助10
2秒前
星辰大海应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
zhonglv7应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
欢呼的念瑶完成签到,获得积分10
3秒前
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
小蘑菇应助落后金鑫采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
4秒前
zhonglv7应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
高大的静曼完成签到,获得积分10
4秒前
timeless完成签到 ,获得积分10
4秒前
zhonglv7应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
wlscj应助wjp采纳,获得20
4秒前
qwerdf发布了新的文献求助10
4秒前
Tourist应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
LB应助科研通管家采纳,获得30
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307271
求助须知:如何正确求助?哪些是违规求助? 4453001
关于积分的说明 13855757
捐赠科研通 4340578
什么是DOI,文献DOI怎么找? 2383323
邀请新用户注册赠送积分活动 1378137
关于科研通互助平台的介绍 1345951