A nomogram for predicting the malignant diagnosis of BI-RADS US category 4A lesions in women with dense breast tissue

医学 列线图 恶性肿瘤 放射科 活检 乳腺癌 逻辑回归 一致性 队列 乳腺摄影术 双雷达 乳腺超声检查 乳房成像 多元分析 癌症 肿瘤科 内科学
作者
Yanning Yang,Yue Hu,Songying Shen,X. Jiang,H. Wang,Ran Gu,Fei Liu,Hongyun Jia,Chang Gong,Q. Liu
出处
期刊:Annals of Oncology [Elsevier BV]
卷期号:30: iii42-iii42
标识
DOI:10.1093/annonc/mdz098.010
摘要

Background: Biopsy has been the recommended for BI-RADS category 4A, 4B and 4C. However, the malignancy rate of 4A lesions is very low (2-10%). Therefore, the majority of biopsies of category 4A lesions are benign it would take unnecessary costs and make patients anxiety. This study aimed to establish a nomogram, incorporating ultrasound and mammographic as well as patients' information, to predict the individual likelihood of malignancy of BI-RADS US 4A lesions in diagnostic setting of women with dense breast. To identify patients at lower risk of malignancy and thus avoid unnecessary biopsy. Methods: Nomogram was based on an analysis of 418 BI-RADS US 4A patients with dense breast tissues treated at Sun Yat-sen Memorial Hospital. They also got physical examination and mammography. All patients were confirmed pathology by breast biopsy or surgical excision. Multivariate logistic regression was used to identify statistically significant variables (P < 0.05), and included in the nomogram. The predictive accuracy and discriminative ability were determined by concordance index (C-index) and calibration curve. Model was subjected to external validation using 97 patients from the second affiliated Hospital of Guanghzou medical university. Results: On multivariable analysis, independent risk factors were history of breast cancer, Ultrasound features (Margin, Shape, Direction, Lymph nodes), Calcifications of mammography, which were in nomogram. The calibration curves for probability of malignancy showed optimal agreement between nomogram prediction and actual observation. The C-index of nomogram for predicting malignancy in training cohort was 0.81 (95%CI: 0.73-0.89), validation cohort was 0.77 (95%CI: 0.58-0.95). In addition, it showed good performance in stratifying different risk groups of patients both in training and validation cohorts. Conclusions: We developed a well discriminated and calibrated nomogram that can provide individual prediction of malignancy of BI-RADS US 4A with dense breast based on history of breast cancer, Ultrasound features (Margin, Shape, Direction, Lymph nodes), Calcifications of mammography. Our nomogram may help to identify patients at lower risk of malignancy and avoid unnecessary biopsy. Legal entity responsible for the study: Sun Yat-sen Memorial Hospital, Sun Yat-sen University. Funding: Guangdong, Science and Technique Department, 2017B030314026 and the National Natural Science Foundation of China (81272893). Disclosure: All authors have declared no conflicts of interest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sy完成签到,获得积分10
10秒前
天天开心完成签到 ,获得积分10
10秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
jiangjiang完成签到 ,获得积分10
12秒前
胜胜糖完成签到 ,获得积分10
14秒前
玻尿酸完成签到,获得积分10
16秒前
chenying完成签到 ,获得积分0
20秒前
远远远远完成签到,获得积分10
21秒前
sunnyqqz完成签到,获得积分10
21秒前
小马甲应助zhang采纳,获得10
21秒前
洸彦完成签到 ,获得积分10
22秒前
受伤问凝完成签到 ,获得积分10
24秒前
zenabia完成签到 ,获得积分10
24秒前
25秒前
锅包肉完成签到 ,获得积分10
27秒前
31秒前
34秒前
傲娇如天发布了新的文献求助10
35秒前
zhang发布了新的文献求助10
38秒前
是风动完成签到 ,获得积分10
39秒前
顺利毕业完成签到 ,获得积分10
42秒前
betyby完成签到 ,获得积分10
46秒前
YTY完成签到,获得积分10
49秒前
49秒前
CHSLN完成签到 ,获得积分10
56秒前
胡楠完成签到,获得积分10
57秒前
风趣的凝雁完成签到 ,获得积分10
58秒前
zz发布了新的文献求助10
1分钟前
1分钟前
依古比古完成签到 ,获得积分10
1分钟前
傲娇如天完成签到,获得积分10
1分钟前
害羞的雁易完成签到 ,获得积分10
1分钟前
科研通AI2S应助考拉采纳,获得10
1分钟前
善良的火完成签到 ,获得积分10
1分钟前
xingxing完成签到 ,获得积分10
1分钟前
1分钟前
567完成签到,获得积分10
1分钟前
aldehyde应助黄雪峰采纳,获得50
1分钟前
yao chen完成签到,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
ВЕРНЫЙ ДРУГ КИТАЙСКОГО НАРОДА СЕРГЕЙ ПОЛЕВОЙ 500
ВОЗОБНОВЛЕН ВЫПУСК ЖУРНАЛА "КИТАЙ" НА РУССКОМ ЯЗЫКЕ 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3907016
求助须知:如何正确求助?哪些是违规求助? 3452391
关于积分的说明 10870285
捐赠科研通 3178275
什么是DOI,文献DOI怎么找? 1755884
邀请新用户注册赠送积分活动 849164
科研通“疑难数据库(出版商)”最低求助积分说明 791387