亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Li Plating Quantification in Commercial Graphite‖LiFePO4 cells

阳极 电镀(地质) 材料科学 电解质 石墨 分离器(采油) 锂(药物) 金属锂 电化学 电极 容量损失 金属 热失控 化学工程 冶金 化学 电池(电) 地球物理学 物理 量子力学 医学 热力学 功率(物理) 物理化学 内分泌学 工程类 地质学
作者
David Anseán,Matthieu Dubarry,Arnaud Devie,Bor Yann Liaw,V. Fernandez,J.C. Viera,M. González
出处
期刊:Meeting abstracts 卷期号:MA2016-02 (6): 900-900
标识
DOI:10.1149/ma2016-02/6/900
摘要

Metallic lithium plating (Li plating) is considered one of the most detrimental phenomenon in lithium ion batteries (LIB), as it not only leads to further aging but also to safety deterioration [1], [2]. Li plating occurs during charge, when Li ions deposit on the carbonaceous anode, in place of Li intercalation. Because metallic Li is highly reactive with the electrolyte, it further reacts consuming more lithium and inducing degradation on the electrode surface. These phenomena results in loss of lithium inventory (LLI) and loss of active material (LAM), leading to capacity loss and power fade. Safety deterioration occurs when the metallic Li results in the formation of moss-like deposits and dendrites [3]. Dendrites may eventually grow and pierce the separator, leading to short-circuits than could potentially trigger thermal runaway. Due to the critical impact of Li plating on LIB’s performance and safety, several studies have focused on this topic [4], [5], aiming to further elucidate its effects and provide a proper method for its detection. Despite the recent improvements in this field, to our best knowledge, an advanced, in situ and cost-effective technique to detect and quantify Li plating still remains to be presented. In this study, we will show the analysis to operando estimate and quantify Li plating on a commercial Graphite‖LiFePO 4 cell. The cells were tested at ambient temperature (23 ºC) using a stressful – yet realistic – long term cycling testing scheme. First, we coupled incremental capacity (IC) and peak area (PA) analyses to identify and quantify the presence of reversible Li plating from a new IC peak, 0, that eventually emerged after cycle 600 (see Fig. 1). Then, we studied the nature of Li plating origins, to observe that gradual cell degradation, and not a sporadic event, lead to Li plating. To conclude, mechanistic model simulations ( ‘alawa toolbox with harvested half-cell data) allowed us to identify the ongoing aging modes, estimate the reversible amount of Li plating and project half-cell degradation on each individual electrode throughout cycling (see Fig. 2). The results showed that large LAM on delithiated negative electrode (i.e., LAM deNE ) eventually caused cell imbalance, leading to overcharge the NE subsequently inducing Li plating. The prospect of obtaining these parameters online during cell monitoring in a battery system operation creates remarkable benefits to improve battery management system (BMS) function for battery diagnosis performance. References [1] J. Vetter, P. Novák, M. R. Wagner, C. Veit, K.-C. Möller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, and A. Hammouche, “Ageing mechanisms in lithium-ion batteries,” J. Power Sources , vol. 147, no. 1–2, pp. 269–281, Sep. 2005. [2] M. C. Smart and B. V. Ratnakumar, “Effects of electrolyte composition on lithium plating in lithium-ion cells,” J. Electrochem. Soc. , vol. 158, no. 4, p. A379, 2011. [3] M. Dollé, L. Sannier, B. Beaudoin, M. Trentin, and J.-M. Tarascon, “Live scanning electron microscope observations of dendritic growth in lithium/polymer cells,” Electrochem. Solid-State Lett. , vol. 5, no. 12, p. A286, 2002. [4] J. C. Burns, D. a. Stevens, and J. R. Dahn, “In-Situ Detection of Lithium Plating Using High Precision Coulometry,” J. Electrochem. Soc. , vol. 162, no. 6, pp. A959–A964, 2015. [5] M. Petzl and M. A. Danzer, “Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries,” J. Power Sources , vol. 254, pp. 80–87, May 2014. Fig. 1. Incremental capacity evolution of the test cells at C/25 Fig. 2. Schematic representation of the Graphite‖LFP test cell, showing the evolution with cycle aging of the simulated results Figure 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四斤瓜完成签到 ,获得积分10
14秒前
英俊的铭应助月亮987采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
E7发布了新的文献求助10
24秒前
24秒前
月亮987发布了新的文献求助10
28秒前
月亮987完成签到,获得积分10
37秒前
43秒前
58秒前
学术通zzz发布了新的文献求助10
1分钟前
1分钟前
一颗忧伤的覆盆子完成签到,获得积分10
1分钟前
科研通AI5应助duoduoqian采纳,获得10
1分钟前
1分钟前
平淡的翅膀完成签到 ,获得积分10
1分钟前
E7完成签到,获得积分10
1分钟前
1分钟前
黎aimomo发布了新的文献求助50
1分钟前
2分钟前
2分钟前
学术通zzz发布了新的文献求助10
2分钟前
present完成签到,获得积分20
2分钟前
duoduoqian发布了新的文献求助10
2分钟前
星辰大海应助duoduoqian采纳,获得10
2分钟前
激动的似狮完成签到,获得积分10
2分钟前
2分钟前
seven发布了新的文献求助10
2分钟前
seven完成签到,获得积分20
2分钟前
沉静茗完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Panther完成签到,获得积分10
4分钟前
4分钟前
发个15分的完成签到 ,获得积分10
4分钟前
熊啊发布了新的文献求助10
4分钟前
小二郎应助wawa采纳,获得10
5分钟前
黎aimomo完成签到,获得积分10
5分钟前
5分钟前
wawa发布了新的文献求助10
5分钟前
今后应助晓豪采纳,获得10
5分钟前
小蘑菇应助wawa采纳,获得10
5分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815803
求助须知:如何正确求助?哪些是违规求助? 3359351
关于积分的说明 10402190
捐赠科研通 3077174
什么是DOI,文献DOI怎么找? 1690218
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767713