Polygenic scores via penalized regression on summary statistics

统计 协变量 回归 汇总统计 阈值 计算机科学 连锁不平衡 回归分析 价值(数学) 计量经济学 数据挖掘 数学 人工智能 生物 基因型 遗传学 图像(数学) 基因 单倍型
作者
Timothy Shin Heng Mak,Robert M. Porsch,Shing Wan Choi,Xueya Zhou,Pak C. Sham
出处
期刊:Genetic Epidemiology [Wiley]
卷期号:41 (6): 469-480 被引量:401
标识
DOI:10.1002/gepi.22050
摘要

ABSTRACT Polygenic scores (PGS) summarize the genetic contribution of a person's genotype to a disease or phenotype. They can be used to group participants into different risk categories for diseases, and are also used as covariates in epidemiological analyses. A number of possible ways of calculating PGS have been proposed, and recently there is much interest in methods that incorporate information available in published summary statistics. As there is no inherent information on linkage disequilibrium (LD) in summary statistics, a pertinent question is how we can use LD information available elsewhere to supplement such analyses. To answer this question, we propose a method for constructing PGS using summary statistics and a reference panel in a penalized regression framework, which we call lassosum . We also propose a general method for choosing the value of the tuning parameter in the absence of validation data. In our simulations, we showed that pseudovalidation often resulted in prediction accuracy that is comparable to using a dataset with validation phenotype and was clearly superior to the conservative option of setting the tuning parameter of lassosum to its lowest value. We also showed that lassosum achieved better prediction accuracy than simple clumping and P ‐value thresholding in almost all scenarios. It was also substantially faster and more accurate than the recently proposed LDpred.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weiwei发布了新的文献求助10
刚刚
arsenal发布了新的文献求助10
1秒前
呼呼兔完成签到,获得积分10
1秒前
1秒前
砥砺前行完成签到 ,获得积分10
1秒前
1秒前
苏苏发布了新的文献求助10
1秒前
可爱的函函应助csjlpp采纳,获得10
1秒前
1秒前
在水一方应助123采纳,获得10
1秒前
哈基汪完成签到,获得积分20
2秒前
2秒前
2秒前
feifei发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
哈基汪发布了新的文献求助10
5秒前
小蚂蚁完成签到,获得积分20
5秒前
NexusExplorer应助奶茶不要糖采纳,获得10
5秒前
5秒前
5秒前
AS完成签到,获得积分10
5秒前
6秒前
脑洞疼应助5号田的泥采纳,获得10
6秒前
云朵完成签到,获得积分10
6秒前
tt发布了新的文献求助10
6秒前
小兰花发布了新的文献求助10
8秒前
8秒前
爆米花应助赵念婉采纳,获得10
8秒前
9秒前
冯FF完成签到,获得积分10
9秒前
9秒前
9秒前
yhy完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
大聪明完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532190
求助须知:如何正确求助?哪些是违规求助? 4620957
关于积分的说明 14575781
捐赠科研通 4560709
什么是DOI,文献DOI怎么找? 2498949
邀请新用户注册赠送积分活动 1478927
关于科研通互助平台的介绍 1450190