飞行1
免疫系统
真皮成纤维细胞
细胞因子
成纤维细胞
生物
免疫学
干扰素
纤维化
癌症研究
细胞培养
医学
内科学
转录因子
基因
生物化学
遗传学
作者
Ryosuke Saigusa,Yoshihide Asano,Kouki Nakamura,Megumi Hirabayashi,Shunsuke Miura,Takashi Yamashita,Takashi Taniguchi,Yohei Ichimura,Takehiro Takahashi,Ayumi Yoshizaki,Tomomitsu Miyagaki,Makoto Sugaya,Shinichi Sato
标识
DOI:10.1016/j.jid.2017.04.035
摘要
Dermal fibroblasts promote skin-localized transdifferentiation of regulatory T cells to T helper (Th) type 2-like cells in systemic sclerosis (SSc). However, the entire effect of SSc dermal fibroblasts on immune cells still remains unknown. Because galectin-9 induces Th2 cytokine-predominant immune imbalance by negatively regulating Th1/Th17 cells in inflammatory diseases, we investigated the contribution of galectin-9 to Th immune balance in SSc lesional skin. We used human clinical samples and Fli1+/– mice because Fli1 deficiency induces SSc-like phenotypes in various cell types. Galectin-9 was overexpressed in SSc dermal fibroblasts in vivo and in vitro. Serum galectin-9 levels were significantly elevated in SSc patients and positively correlated with skin score. Galectin-9 was up-regulated by autocrine endothelin stimulation and Fli1 deficiency, and Fli1 occupied the LGALS9 promoter in dermal fibroblasts. Co-culture of splenic CD4+ T cells with Fli1+/– dermal fibroblasts significantly increased IL-4–producing cell proportion, and this effect was cancelled in parallel with the increased interferon-γ production when Fli1+/– dermal fibroblasts were transfected with Lgals9 small interfering RNA. Furthermore, Lgals9 small interfering RNA suppressed dermal collagen deposition by increasing interferon-γ production of skin-infiltrating CD4+ T cells in bleomycin-treated mice. These results suggest that SSc dermal fibroblasts suppress interferon-γ expression of skin-infiltrating CD4+ T cells through galectin-9 overproduction, promoting skin fibrosis development. Dermal fibroblasts promote skin-localized transdifferentiation of regulatory T cells to T helper (Th) type 2-like cells in systemic sclerosis (SSc). However, the entire effect of SSc dermal fibroblasts on immune cells still remains unknown. Because galectin-9 induces Th2 cytokine-predominant immune imbalance by negatively regulating Th1/Th17 cells in inflammatory diseases, we investigated the contribution of galectin-9 to Th immune balance in SSc lesional skin. We used human clinical samples and Fli1+/– mice because Fli1 deficiency induces SSc-like phenotypes in various cell types. Galectin-9 was overexpressed in SSc dermal fibroblasts in vivo and in vitro. Serum galectin-9 levels were significantly elevated in SSc patients and positively correlated with skin score. Galectin-9 was up-regulated by autocrine endothelin stimulation and Fli1 deficiency, and Fli1 occupied the LGALS9 promoter in dermal fibroblasts. Co-culture of splenic CD4+ T cells with Fli1+/– dermal fibroblasts significantly increased IL-4–producing cell proportion, and this effect was cancelled in parallel with the increased interferon-γ production when Fli1+/– dermal fibroblasts were transfected with Lgals9 small interfering RNA. Furthermore, Lgals9 small interfering RNA suppressed dermal collagen deposition by increasing interferon-γ production of skin-infiltrating CD4+ T cells in bleomycin-treated mice. These results suggest that SSc dermal fibroblasts suppress interferon-γ expression of skin-infiltrating CD4+ T cells through galectin-9 overproduction, promoting skin fibrosis development.
科研通智能强力驱动
Strongly Powered by AbleSci AI