Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies

ATP结合盒运输机 抗药性 多重耐药 计算生物学 生物 药品 运输机 药理学 医学 遗传学 基因
作者
Wen Li,Han Zhang,Yehuda G. Assaraf,Kun Zhao,Xiaojun Xu,Jinbing Xie,Dong‐Hua Yang,Zhe‐Sheng Chen
出处
期刊:Drug Resistance Updates [Elsevier BV]
卷期号:27: 14-29 被引量:578
标识
DOI:10.1016/j.drup.2016.05.001
摘要

Multidrug resistance is a key determinant of cancer chemotherapy failure. One of the major causes of multidrug resistance is the enhanced efflux of drugs by membrane ABC transporters. Targeting ABC transporters projects a promising approach to eliminating or suppressing drug resistance in cancer treatment. To reveal the functional mechanisms of ABC transporters in drug resistance, extensive studies have been conducted from identifying drug binding sites to elucidating structural dynamics. In this review article, we examined the recent crystal structures of ABC proteins to depict the functionally important structural elements, such as domains, conserved motifs, and critical amino acids that are involved in ATP-binding and drug efflux. We inspected the drug-binding sites on ABC proteins and the molecular mechanisms of various substrate interactions with the drug binding pocket. While our continuous battle against drug resistance is far from over, new approaches and technologies have emerged to push forward our frontier. Most recent developments in anti-MDR strategies include P-gp inhibitors, RNA-interference, nano-medicines, and delivering combination strategies. With the advent of the 'Omics' era - genomics, epigenomics, transcriptomics, proteomics, and metabolomics - these disciplines play an important role in fighting the battle against chemoresistance by further unraveling the molecular mechanisms of drug resistance and shed light on medical therapies that specifically target MDR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纷扬完成签到,获得积分10
刚刚
lalala发布了新的文献求助10
2秒前
油条完成签到,获得积分10
2秒前
NARUTO完成签到,获得积分10
2秒前
3秒前
唐唐完成签到,获得积分10
3秒前
4秒前
韩羽丰完成签到,获得积分10
5秒前
木木发布了新的文献求助10
5秒前
隐形曼青应助qifei采纳,获得10
6秒前
爱吃饼干的土拨鼠完成签到,获得积分10
7秒前
9秒前
9秒前
Zerozak完成签到,获得积分10
10秒前
樂酉完成签到 ,获得积分10
11秒前
虫虫完成签到,获得积分20
12秒前
桃紫完成签到,获得积分10
13秒前
深情安青应助执着千青采纳,获得10
13秒前
TrinhTran2001发布了新的文献求助10
14秒前
上官若男应助NARUTO采纳,获得10
15秒前
脑洞疼应助听闻采纳,获得10
15秒前
15秒前
只道寻常完成签到,获得积分10
16秒前
zyzzyzzyz完成签到,获得积分10
18秒前
wzzznh完成签到 ,获得积分10
20秒前
橙子完成签到,获得积分10
21秒前
情怀应助大观天下采纳,获得10
23秒前
桐桐应助木木采纳,获得10
24秒前
24秒前
25秒前
25秒前
29秒前
徐凤年发布了新的文献求助10
29秒前
清爽花卷发布了新的文献求助10
31秒前
32秒前
34秒前
852应助phil采纳,获得10
34秒前
35秒前
36秒前
星辰大海应助buhuidanhuixue采纳,获得10
36秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842679
求助须知:如何正确求助?哪些是违规求助? 3384676
关于积分的说明 10536789
捐赠科研通 3105234
什么是DOI,文献DOI怎么找? 1710162
邀请新用户注册赠送积分活动 823493
科研通“疑难数据库(出版商)”最低求助积分说明 774110