图灵
图案形成
分叉
振幅
统计物理学
序列(生物学)
扩散
反应扩散系统
流行病模型
物理
理论(学习稳定性)
边值问题
选择(遗传算法)
计算机科学
量子力学
非线性系统
化学
生物
程序设计语言
社会学
人工智能
人口学
生物化学
机器学习
遗传学
人口
作者
Weiming Wang,Houye Liu,Yongli Cai,Zhenqing Li
出处
期刊:Chinese Physics B
[IOP Publishing]
日期:2011-07-01
卷期号:20 (7): 074702-074702
被引量:22
标识
DOI:10.1088/1674-1056/20/7/074702
摘要
We present Turing pattern selection in a reaction-diffusion epidemic model under zero-flux boundary conditions. The value of this study is twofold. First, it establishes the amplitude equations for the excited modes, which determines the stability of amplitudes towards uniform and inhomogeneous perturbations. Second, it illustrates all five categories of Turing patterns close to the onset of Turing bifurcation via numerical simulations which indicates that the model dynamics exhibits complex pattern replication: on increasing the control parameter ν, the sequence "H0 hexagons → H0-hexagon-stripe mixtures → stripes → Hπ-hexagon-stripe mixtures → Hπ hexagons" is observed. This may enrich the pattern dynamics in a diffusive epidemic model.
科研通智能强力驱动
Strongly Powered by AbleSci AI