Predictive ability of machine learning methods for massive crop yield prediction

均方误差 回归 统计 线性回归 支持向量机 感知器 作物产量 产量(工程) 数学 回归分析 机器学习 人工神经网络 多层感知器 计算机科学 人工智能 农学 生物 冶金 材料科学
作者
Alberto González-Sánchez,Juan Frausto–Solís,Waldo Ojeda-Bustamante
出处
期刊:Spanish Journal of Agricultural Research [Spanish National Research Council]
卷期号:12 (2): 313-313 被引量:129
标识
DOI:10.5424/sjar/2014122-4439
摘要

An important issue for agricultural planning purposes is the accurate yield estimation for the numerous crops involved in the planning. Machine learning (ML) is an essential approach for achieving practical and effective solutions for this problem. Many comparisons of ML methods for yield prediction have been made, seeking for the most accurate technique. Generally, the number of evaluated crops and techniques is too low and does not provide enough information for agricultural planning purposes. This paper compares the predictive accuracy of ML and linear regression techniques for crop yield prediction in ten crop datasets. Multiple linear regression, M5-Prime regression trees, perceptron multilayer neural networks, support vector regression and k-nearest neighbor methods were ranked. Four accuracy metrics were used to validate the models: the root mean square error (RMS), root relative square error (RRSE), normalized mean absolute error (MAE), and correlation factor (R). Real data of an irrigation zone of Mexico were used for building the models. Models were tested with samples of two consecutive years. The results show that M5-Prime and k-nearest neighbor techniques obtain the lowest average RMSE errors (5.14 and 4.91), the lowest RRSE errors (79.46% and 79.78%), the lowest average MAE errors (18.12% and 19.42%), and the highest average correlation factors (0.41 and 0.42). Since M5-Prime achieves the largest number of crop yield models with the lowest errors, it is a very suitable tool for massive crop yield prediction in agricultural planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助多肉葡萄采纳,获得10
刚刚
daiyan发布了新的文献求助10
1秒前
1秒前
123发布了新的文献求助10
2秒前
斯文败类应助深情元槐采纳,获得10
2秒前
顾矜应助Ronnie采纳,获得10
3秒前
端庄向雁完成签到,获得积分10
3秒前
虚拟小号完成签到,获得积分10
3秒前
ghost发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
彭于晏应助666采纳,获得10
6秒前
李禹晗发布了新的文献求助10
6秒前
7秒前
郭通发布了新的文献求助10
8秒前
缥缈襄完成签到,获得积分10
8秒前
欢呼忆丹完成签到,获得积分10
8秒前
8秒前
9秒前
打打应助LMH采纳,获得10
10秒前
清都山水郎完成签到,获得积分10
10秒前
10秒前
聪慧的乌完成签到,获得积分10
10秒前
yao chen发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
11秒前
12完成签到 ,获得积分10
11秒前
12秒前
Chloe发布了新的文献求助10
12秒前
12秒前
研友_Z729Mn发布了新的文献求助10
12秒前
青柠完成签到,获得积分20
13秒前
多肉葡萄发布了新的文献求助10
13秒前
絮语发布了新的文献求助10
13秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406668
求助须知:如何正确求助?哪些是违规求助? 4524470
关于积分的说明 14098590
捐赠科研通 4438297
什么是DOI,文献DOI怎么找? 2436104
邀请新用户注册赠送积分活动 1428223
关于科研通互助平台的介绍 1406294