对角线的
基质(化学分析)
对角矩阵
数学优化
简单(哲学)
计算机科学
数学
拉格朗日乘数
矩阵指数
应用数学
点(几何)
算法
数学分析
认识论
哲学
复合材料
材料科学
微分方程
几何学
作者
Theo Junius,Jan Oosterhaven
标识
DOI:10.1080/0953531032000056954
摘要
Normally, when updating or regionalizing input-output matrices with negative entries, the negative numbers are first brought outside the matrix, then the matrix is updated or regionalized, then the negative numbers are added back to the result. This is theoretically, and sometimes also empirically, a rather unsatisfactory procedure. This paper proposes a theoretically sound alternative for the presently used ad hoc procedure. Based on the first-order conditions of a restated information loss problem, we generalize the RAS-procedure using reciprocals of the exponential transformations of the related Lagrange multipliers. The diagonal matrices that update or regionalize a given matrix optimally are the solutions of a fixed-point problem. To derive a numerical solution, the paper presents the GRAS-algorithm, which is illustrated in terms of a simple updating example.
科研通智能强力驱动
Strongly Powered by AbleSci AI