摘要
Research Article| March 01, 2008 Lower Cretaceous gas shales in northeastern British Columbia, Part I: geological controls on methane sorption capacity Gareth R.L. Chalmers; Gareth R.L. Chalmers Department of Earth and Ocean Sciences, University of British Columbia, 6339 Stores Road, Vancouver, BC V6T 1Z4, Canada Search for other works by this author on: GSW Google Scholar R. Marc Bustin R. Marc Bustin Department of Earth and Ocean Sciences, University of British Columbia, 6339 Stores Road, Vancouver, BC V6T 1Z4, Canada Search for other works by this author on: GSW Google Scholar Author and Article Information Gareth R.L. Chalmers Department of Earth and Ocean Sciences, University of British Columbia, 6339 Stores Road, Vancouver, BC V6T 1Z4, Canada R. Marc Bustin Department of Earth and Ocean Sciences, University of British Columbia, 6339 Stores Road, Vancouver, BC V6T 1Z4, Canada Publisher: Canadian Society of Petroleum Geologists Received: 02 Sep 2007 Accepted: 29 Oct 2007 First Online: 02 Mar 2017 Online ISSN: 2368-0261 Print ISSN: 0007-4802 © The Society of Canadian Petroleum Geologists Bulletin of Canadian Petroleum Geology (2008) 56 (1): 1–21. https://doi.org/10.2113/gscpgbull.56.1.1 Article history Received: 02 Sep 2007 Accepted: 29 Oct 2007 First Online: 02 Mar 2017 Cite View This Citation Add to Citation Manager Share Icon Share Facebook Twitter LinkedIn MailTo Tools Icon Tools Get Permissions Search Site Citation Gareth R.L. Chalmers, R. Marc Bustin; Lower Cretaceous gas shales in northeastern British Columbia, Part I: geological controls on methane sorption capacity. Bulletin of Canadian Petroleum Geology 2008;; 56 (1): 1–21. doi: https://doi.org/10.2113/gscpgbull.56.1.1 Download citation file: Ris (Zotero) Refmanager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbar search Search Dropdown Menu toolbar search search input Search input auto suggest filter your search All ContentBy SocietyBulletin of Canadian Petroleum Geology Search Advanced Search Abstract The geological controls on methane sorption capacity for the Lower Cretaceous Buckinghorse Formation and equivalent strata in northeastern British Columbia, Canada have been investigated. The methane sorption capacity ranges between 0.04 to 1.89 cm3/g at 6 MPa (3.2 to 60.4 scf/ton at 870 PSIA) and the corresponding total organic carbon (TOC) content is between 0.5 and 17 wt%. Equilibrium moisture content is between 1.5 and 11 wt% and the organic maturity measured by Tmax ranges between 416°C (immature) and 476°C (overmature).TOC content is the most significant control on methane sorption capacity, however, other important factors include the kerogen type, maturity and clay content, in particular the abundance of illite. A positive correlation exists between the TOC content and methane capacity. Samples with higher surface area have higher methane sorption capacities. The micro- and mesoporous surface area increase with TOC and illite content. On a per unit TOC volume basis, type II/III and III kerogens have higher methane sorption capacity compared to types I and II because of their higher micropore volumes. Micropore volume on a per unit TOC volume basis increases with maturity for all kerogen types. Across the study area there is a decrease in TOC concentration with increasing maturity which, in part, is attributed to hydrocarbon generation but also coincidently reflects the different depositional environments. The amount of illite also increases with maturity through the process of illitization. No correlation exists between moisture content and methane capacity. Samples with high moisture content can have high methane capacities which indicate water and methane molecules occupy different sorption sites. You do not have access to this content, please speak to your institutional administrator if you feel you should have access.