去模糊
图像复原
盲反褶积
反褶积
共轭梯度法
维纳反褶积
反问题
迭代法
预处理程序
数学
迭代重建
算法
维纳滤波器
收敛速度
逆滤波器
趋同(经济学)
反向
数学优化
图像处理
计算机科学
图像(数学)
计算机视觉
频道(广播)
数学分析
经济
经济增长
计算机网络
几何学
作者
James G. Nagy,Robert J. Plemmons,Todd C. Torgersen
摘要
Removing a linear shift-invariant blur from a signal or image can be accomplished by inverse or Wiener filtering, or by an iterative least-squares deblurring procedure. Because of the ill-posed characteristics of the deconvolution problem, in the presence of noise, filtering methods often yield poor results. On the other hand, iterative methods often suffer from slow convergence at high spatial frequencies. This paper concerns solving deconvolution problems for atmospherically blurred images by the preconditioned conjugate gradient algorithm, where a new approximate inverse preconditioner is used to increase the rate of convergence. Theoretical results are established to show that fast convergence can be expected, and test results are reported for a ground-based astronomical imaging problem.
科研通智能强力驱动
Strongly Powered by AbleSci AI