The Impact of a Machine Learning Early Warning Score on Hospital Mortality: A Multicenter Clinical Intervention Trial

医学 预警得分 生命体征 急诊分诊台 急诊医学 心理干预 队列 优势比 干预(咨询) 死亡率 队列研究 儿科 内科学 外科 精神科
作者
Christopher Winslow,Dana P. Edelson,Matthew M Churpek,Munish Taneja,Nirav Shah,Avisek Datta,Chi-Hsiung Wang,Urmila Ravichandran,Patrick H. McNulty,Maureen Kharasch,Lakshmi Halasyamani
出处
期刊:Critical Care Medicine [Lippincott Williams & Wilkins]
卷期号:50 (9): 1339-1347 被引量:11
标识
DOI:10.1097/ccm.0000000000005492
摘要

OBJECTIVES: To determine the impact of a machine learning early warning risk score, electronic Cardiac Arrest Risk Triage (eCART), on mortality for elevated-risk adult inpatients. DESIGN: A pragmatic pre- and post-intervention study conducted over the same 10-month period in 2 consecutive years. SETTING: Four-hospital community-academic health system. PATIENTS: All adult patients admitted to a medical-surgical ward. INTERVENTIONS: During the baseline period, clinicians were blinded to eCART scores. During the intervention period, scores were presented to providers. Scores greater than or equal to 95th percentile were designated high risk prompting a physician assessment for ICU admission. Scores between the 89th and 95th percentiles were designated intermediate risk, triggering a nurse-directed workflow that included measuring vital signs every 2 hours and contacting a physician to review the treatment plan. MEASUREMENTS AND MAIN RESULTS: The primary outcome was all-cause inhospital mortality. Secondary measures included vital sign assessment within 2 hours, ICU transfer rate, and time to ICU transfer. A total of 60,261 patients were admitted during the study period, of which 6,681 (11.1%) met inclusion criteria (baseline period n = 3,191, intervention period n = 3,490). The intervention period was associated with a significant decrease in hospital mortality for the main cohort (8.8% vs 13.9%; p < 0.0001; adjusted odds ratio [OR], 0.60 [95% CI, 0.52–0.71]). A significant decrease in mortality was also seen for the average-risk cohort not subject to the intervention (0.49% vs 0.26%; p < 0.05; adjusted OR, 0.53 [95% CI, 0.41–0.74]). In subgroup analysis, the benefit was seen in both high- (17.9% vs 23.9%; p = 0.001) and intermediate-risk (2.0% vs 4.0 %; p = 0.005) patients. The intervention period was also associated with a significant increase in ICU transfers, decrease in time to ICU transfer, and increase in vital sign reassessment within 2 hours. CONCLUSIONS: Implementation of a machine learning early warning score-driven protocol was associated with reduced inhospital mortality, likely driven by earlier and more frequent ICU transfer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背后昊焱发布了新的文献求助10
1秒前
短巷完成签到 ,获得积分10
1秒前
weijie完成签到,获得积分10
11秒前
科研通AI5应助立军采纳,获得10
13秒前
淡然冬灵发布了新的文献求助30
15秒前
Yang22完成签到,获得积分10
17秒前
kai chen完成签到 ,获得积分0
18秒前
孟__发布了新的文献求助10
18秒前
SciGPT应助光亮元枫采纳,获得10
23秒前
24秒前
lalala发布了新的文献求助10
26秒前
叁叁完成签到 ,获得积分10
26秒前
英俊的铭应助shlw采纳,获得10
26秒前
pzh完成签到 ,获得积分10
28秒前
taster发布了新的文献求助20
29秒前
31秒前
孟__完成签到,获得积分10
32秒前
杨涵完成签到 ,获得积分10
33秒前
刘丰完成签到 ,获得积分10
34秒前
脑洞疼应助taster采纳,获得10
34秒前
jinyu完成签到,获得积分10
35秒前
Linden_bd完成签到 ,获得积分10
36秒前
36秒前
光亮元枫发布了新的文献求助10
37秒前
slin_sjtu完成签到,获得积分0
38秒前
39秒前
41秒前
41秒前
44秒前
CipherSage应助瘦瘦的雪瑶采纳,获得10
46秒前
飞飞完成签到 ,获得积分10
47秒前
dingding完成签到,获得积分10
51秒前
酷酷的树叶完成签到 ,获得积分10
51秒前
刘荣圣完成签到,获得积分10
54秒前
刻苦天寿完成签到 ,获得积分10
54秒前
光亮元枫完成签到,获得积分10
59秒前
复杂的凝冬完成签到,获得积分10
59秒前
闪闪乘风完成签到 ,获得积分10
1分钟前
Elige完成签到,获得积分10
1分钟前
苏碧萱完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10226967
捐赠科研通 3041589
什么是DOI,文献DOI怎么找? 1669510
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734