Dynamic Order Dispatching With Multiobjective Reward Learning

订单(交换) 计算机科学 匹配(统计) 运筹学 运输工程 实时计算 模拟 工程类 财务 数学 统计 经济
作者
Wenqi Zhang,Qiang Wang,Donghai Shi,Yuan Zhe-ming,Guilong Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 18001-18011 被引量:3
标识
DOI:10.1109/tits.2022.3167030
摘要

Traffic supply-demand mismatching has a severe impact on intelligent transportation systems. Fortunately, order dispatching is a promising option to mitigate the traffic supply-demand imbalance. Along this line, this article proposes the Multi-Driver Multi-Order Dispatching (MDMOD) method to make efficient order dispatching policy and enhance the experience of drivers and passengers. In the proposed MDMOD method, the Dynamic Multi-Objective Reward Learning (DMRL) algorithm is proposed to measure the driver-order-pair value, which illustrates the importance of a driver serving a specific order. A centralized matching algorithm is introduced to match all drivers and orders to maximize all driver-order-pair values. The multi-objective reward in the DMRL algorithm considers both immediate gains (i.e., pick-up distance) and future gains (i.e., the future traffic demand of order destination) to effectively improve the experience of drivers and passengers. Furthermore, by introducing the driver service level into the multi-objective reward, the "outstanding driver better reward" mechanism is realized to promote the ecological development of ride-sharing platforms. Notably, the Temporal-Graph Convolutional Network algorithm is proposed to predict the future traffic demand. Some virtual orders, which generated with the predicted future traffic demand, are dispatched to idle drivers to multiplex the traffic supply fully. A simulator is designed to test the performance of the proposed MDMOD method, experimental results demonstrate that the MDMOD method outperforms the state-of-the-art methods in terms of Average Driver Income and Order Response Rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王认真完成签到,获得积分10
刚刚
库兹马完成签到,获得积分10
1秒前
七七完成签到,获得积分10
1秒前
李健应助coco采纳,获得10
1秒前
YOYOYO举报求助违规成功
1秒前
sunyz举报求助违规成功
1秒前
望除举报求助违规成功
1秒前
1秒前
2秒前
阿北完成签到,获得积分10
2秒前
xtt完成签到,获得积分10
2秒前
2秒前
浑天与发布了新的文献求助10
3秒前
3秒前
研友_7ZebY8完成签到,获得积分10
3秒前
Lucas应助GD88采纳,获得10
3秒前
沉静青寒完成签到,获得积分10
4秒前
半圆亻完成签到,获得积分10
4秒前
Nico多多看paper完成签到,获得积分10
4秒前
科研通AI5应助caicainuegou采纳,获得10
4秒前
酷酷珠发布了新的文献求助20
4秒前
南知寒发布了新的文献求助10
4秒前
科目三应助SYY采纳,获得10
4秒前
阿呸完成签到,获得积分10
4秒前
as9988776654完成签到 ,获得积分10
5秒前
5秒前
陶醉发布了新的文献求助10
5秒前
星辰大海应助HM采纳,获得10
5秒前
栗子完成签到 ,获得积分10
6秒前
6秒前
一一完成签到,获得积分10
6秒前
6秒前
sdl发布了新的文献求助10
7秒前
玖Nine发布了新的文献求助10
7秒前
Lawrence完成签到,获得积分10
8秒前
ajc发布了新的文献求助10
8秒前
池不胖发布了新的文献求助10
9秒前
dxm发布了新的文献求助10
10秒前
浑天与完成签到,获得积分20
10秒前
崽崽完成签到,获得积分10
10秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
The Oxford Handbook of Video Game Music and Sound 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827518
求助须知:如何正确求助?哪些是违规求助? 3369808
关于积分的说明 10458344
捐赠科研通 3089517
什么是DOI,文献DOI怎么找? 1699957
邀请新用户注册赠送积分活动 817567
科研通“疑难数据库(出版商)”最低求助积分说明 770269