Predicting Nanoparticle Delivery to Tumors Using Machine Learning and Artificial Intelligence Approaches

随机森林 纳米医学 人工智能 机器学习 人工神经网络 支持向量机 计算机科学 深度学习 癌症 纳米颗粒 纳米技术 材料科学 医学 内科学
作者
Zhoumeng Lin,Wei-Chun Chou,Yi-Hsien Cheng,Chunla He,Nancy A. Monteiro‐Riviere,Jim E. Riviere
出处
期刊:International Journal of Nanomedicine [Dove Medical Press]
卷期号:Volume 17: 1365-1379 被引量:34
标识
DOI:10.2147/ijn.s344208
摘要

Low delivery efficiency of nanoparticles (NPs) to the tumor is a critical barrier in the field of cancer nanomedicine. Strategies on how to improve NP tumor delivery efficiency remain to be determined.This study analyzed the roles of NP physicochemical properties, tumor models, and cancer types in NP tumor delivery efficiency using multiple machine learning and artificial intelligence methods, using data from a recently published Nano-Tumor Database that contains 376 datasets generated from a physiologically based pharmacokinetic (PBPK) model.The deep neural network model adequately predicted the delivery efficiency of different NPs to different tumors and it outperformed all other machine learning methods; including random forest, support vector machine, linear regression, and bagged model methods. The adjusted determination coefficients (R2) in the full training dataset were 0.92, 0.77, 0.77 and 0.76 for the maximum delivery efficiency (DEmax), delivery efficiency at 24 h (DE24), at 168 h (DE168), and at the last sampling time (DETlast). The corresponding R2 values in the test dataset were 0.70, 0.46, 0.33 and 0.63, respectively. Also, this study showed that cancer type was an important determinant for the deep neural network model in predicting the tumor delivery efficiency across all endpoints (19-29%). Among all physicochemical properties, the Zeta potential and core material played a greater role than other properties, such as the type, shape, and targeting strategy.This study provides a quantitative model to improve the design of cancer nanomedicine with greater tumor delivery efficiency. These results help to improve our understanding of the causes of low NP tumor delivery efficiency. This study demonstrates the feasibility of integrating artificial intelligence with PBPK modeling approaches to study cancer nanomedicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
曾经采蓝完成签到,获得积分10
刚刚
午盏发布了新的文献求助10
1秒前
斯文败类应助六六采纳,获得10
3秒前
斯文败类应助曾经采蓝采纳,获得10
4秒前
4秒前
ztc给ztc的求助进行了留言
5秒前
7秒前
8秒前
包容的小蚂蚁完成签到,获得积分10
9秒前
9秒前
11秒前
11秒前
ZDTT发布了新的文献求助10
12秒前
spc68应助爱吃鱼的猫采纳,获得10
12秒前
fqyd发布了新的文献求助10
13秒前
前交叉还在完成签到,获得积分10
13秒前
万能图书馆应助沈睿采纳,获得10
14秒前
14秒前
小马甲应助孤岛采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
16秒前
CGDAZE完成签到,获得积分10
17秒前
17秒前
HAL完成签到 ,获得积分10
19秒前
地狱跳跳虎完成签到,获得积分10
20秒前
23秒前
谨慎的自中完成签到,获得积分10
23秒前
从容的念柏完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
26秒前
27秒前
27秒前
28秒前
Jasper应助小李子采纳,获得10
28秒前
啦啦啦发布了新的文献求助10
29秒前
Chimmy完成签到,获得积分10
30秒前
jiafang完成签到,获得积分10
31秒前
32秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5744595
求助须知:如何正确求助?哪些是违规求助? 5420782
关于积分的说明 15350455
捐赠科研通 4884794
什么是DOI,文献DOI怎么找? 2626158
邀请新用户注册赠送积分活动 1574922
关于科研通互助平台的介绍 1531745