Edge-Guided Recurrent Positioning Network for Salient Object Detection in Optical Remote Sensing Images

GSM演进的增强数据速率 突出 计算机科学 编码器 人工智能 对象(语法) 计算机视觉 解码方法 特征(语言学) 代表(政治) 过程(计算) 遥感 地理 算法 政治 操作系统 哲学 语言学 法学 政治学
作者
Xiaofei Zhou,Kunye Shen,Li Weng,Runmin Cong,Bolun Zheng,Jiyong Zhang,Chenggang Yan
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (1): 539-552 被引量:105
标识
DOI:10.1109/tcyb.2022.3163152
摘要

Optical remote sensing images (RSIs) have been widely used in many applications, and one of the interesting issues about optical RSIs is the salient object detection (SOD). However, due to diverse object types, various object scales, numerous object orientations, and cluttered backgrounds in optical RSIs, the performance of the existing SOD models often degrade largely. Meanwhile, cutting-edge SOD models targeting optical RSIs typically focus on suppressing cluttered backgrounds, while they neglect the importance of edge information which is crucial for obtaining precise saliency maps. To address this dilemma, this article proposes an edge-guided recurrent positioning network (ERPNet) to pop-out salient objects in optical RSIs, where the key point lies in the edge-aware position attention unit (EPAU). First, the encoder is used to give salient objects a good representation, that is, multilevel deep features, which are then delivered into two parallel decoders, including: 1) an edge extraction part and 2) a feature fusion part. The edge extraction module and the encoder form a U-shape architecture, which not only provides accurate salient edge clues but also ensures the integrality of edge information by extra deploying the intraconnection. That is to say, edge features can be generated and reinforced by incorporating object features from the encoder. Meanwhile, each decoding step of the feature fusion module provides the position attention about salient objects, where position cues are sharpened by the effective edge information and are used to recurrently calibrate the misaligned decoding process. After that, we can obtain the final saliency map by fusing all position attention cues. Extensive experiments are conducted on two public optical RSIs datasets, and the results show that the proposed ERPNet can accurately and completely pop-out salient objects, which consistently outperforms the state-of-the-art SOD models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
此话当真发布了新的文献求助10
2秒前
唯心止论发布了新的文献求助10
3秒前
xibaluma发布了新的文献求助10
5秒前
刘文思发布了新的文献求助10
5秒前
美好的从阳完成签到,获得积分20
6秒前
科研奇男子完成签到,获得积分10
7秒前
9秒前
他和她的猫完成签到,获得积分10
10秒前
隐形曼青应助贪玩的听荷采纳,获得10
10秒前
彭于晏应助拔刀斩落樱采纳,获得10
11秒前
joy完成签到 ,获得积分10
11秒前
12秒前
brainxue完成签到,获得积分10
14秒前
斯文败类应助大理学子采纳,获得10
14秒前
14秒前
niii发布了新的文献求助10
17秒前
晨风韵雨发布了新的文献求助10
18秒前
joy发布了新的文献求助10
18秒前
冰糕发布了新的文献求助20
18秒前
relink完成签到,获得积分10
19秒前
此话当真完成签到,获得积分10
19秒前
赘婿应助听风轻语采纳,获得10
19秒前
思源应助niii采纳,获得10
22秒前
小糊涂仙完成签到,获得积分10
23秒前
linci完成签到,获得积分10
23秒前
舒岑皓完成签到,获得积分20
23秒前
seven完成签到,获得积分10
24秒前
CAt5完成签到,获得积分10
24秒前
天天快乐应助楠楠采纳,获得10
26秒前
高高冰蝶应助快乐的书雁采纳,获得10
27秒前
gffh完成签到,获得积分10
27秒前
GXinG完成签到 ,获得积分10
27秒前
Nnn完成签到,获得积分10
28秒前
依灵完成签到,获得积分10
28秒前
29秒前
敏感的SCI完成签到,获得积分10
31秒前
32秒前
32秒前
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785864
求助须知:如何正确求助?哪些是违规求助? 3331212
关于积分的说明 10250565
捐赠科研通 3046660
什么是DOI,文献DOI怎么找? 1672149
邀请新用户注册赠送积分活动 801039
科研通“疑难数据库(出版商)”最低求助积分说明 759979