Edge-Guided Recurrent Positioning Network for Salient Object Detection in Optical Remote Sensing Images

GSM演进的增强数据速率 突出 计算机科学 编码器 人工智能 对象(语法) 计算机视觉 解码方法 特征(语言学) 代表(政治) 过程(计算) 遥感 地理 算法 政治 操作系统 哲学 语言学 法学 政治学
作者
Xiaofei Zhou,Kunye Shen,Li Weng,Runmin Cong,Bolun Zheng,Jiyong Zhang,Chenggang Yan
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (1): 539-552 被引量:114
标识
DOI:10.1109/tcyb.2022.3163152
摘要

Optical remote sensing images (RSIs) have been widely used in many applications, and one of the interesting issues about optical RSIs is the salient object detection (SOD). However, due to diverse object types, various object scales, numerous object orientations, and cluttered backgrounds in optical RSIs, the performance of the existing SOD models often degrade largely. Meanwhile, cutting-edge SOD models targeting optical RSIs typically focus on suppressing cluttered backgrounds, while they neglect the importance of edge information which is crucial for obtaining precise saliency maps. To address this dilemma, this article proposes an edge-guided recurrent positioning network (ERPNet) to pop-out salient objects in optical RSIs, where the key point lies in the edge-aware position attention unit (EPAU). First, the encoder is used to give salient objects a good representation, that is, multilevel deep features, which are then delivered into two parallel decoders, including: 1) an edge extraction part and 2) a feature fusion part. The edge extraction module and the encoder form a U-shape architecture, which not only provides accurate salient edge clues but also ensures the integrality of edge information by extra deploying the intraconnection. That is to say, edge features can be generated and reinforced by incorporating object features from the encoder. Meanwhile, each decoding step of the feature fusion module provides the position attention about salient objects, where position cues are sharpened by the effective edge information and are used to recurrently calibrate the misaligned decoding process. After that, we can obtain the final saliency map by fusing all position attention cues. Extensive experiments are conducted on two public optical RSIs datasets, and the results show that the proposed ERPNet can accurately and completely pop-out salient objects, which consistently outperforms the state-of-the-art SOD models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助呼噜娃David采纳,获得10
刚刚
刚刚
DSC发布了新的文献求助10
1秒前
lz完成签到,获得积分10
1秒前
我爱科研发布了新的文献求助10
2秒前
小王完成签到,获得积分10
2秒前
llllllll发布了新的文献求助10
2秒前
afeifei完成签到,获得积分10
2秒前
qinshugg完成签到,获得积分10
4秒前
5秒前
5秒前
Akim应助罗博超采纳,获得10
5秒前
6秒前
SYLH应助11122采纳,获得10
6秒前
情怀应助YY采纳,获得10
7秒前
CipherSage应助xun采纳,获得10
8秒前
8秒前
XoXo完成签到,获得积分10
9秒前
9秒前
abcABC完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
NexusExplorer应助我爱科研采纳,获得10
12秒前
12秒前
12秒前
13秒前
西洲发布了新的文献求助10
13秒前
14秒前
上官若男应助千本采纳,获得10
14秒前
shao发布了新的文献求助10
15秒前
Sisyphus完成签到,获得积分10
15秒前
15秒前
连冷安发布了新的文献求助10
16秒前
wth发布了新的文献求助10
17秒前
18秒前
丘比特应助害羞的烨华采纳,获得30
19秒前
SciGPT应助lz采纳,获得10
19秒前
朱凌娇发布了新的文献求助10
19秒前
析木发布了新的文献求助10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
A simple method for reusing western blots on PVDF membranes 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3925632
求助须知:如何正确求助?哪些是违规求助? 3470224
关于积分的说明 10962629
捐赠科研通 3199836
什么是DOI,文献DOI怎么找? 1767999
邀请新用户注册赠送积分活动 857135
科研通“疑难数据库(出版商)”最低求助积分说明 795939