Bi-Directional Long Short-Term Memory Neural Network Modeling of Data Retention Characterization in 3-D Triple-Level Cell NAND Flash Memory

符号 人工神经网络 期限(时间) 国家(计算机科学) 算法 计算机科学 人工智能 数学 算术 物理 量子力学
作者
Hyundong Jang,Chanyang Park,Kihoon Nam,Hyeok Yun,Kyeongrae Cho,Jun-Sik Yoon,Hyun‐Chul Choi,Ho-Jung Kang,Min Sang Park,Jaesung Sim,Rock‐Hyun Baek
出处
期刊:IEEE Transactions on Electron Devices [Institute of Electrical and Electronics Engineers]
卷期号:69 (8): 4241-4247 被引量:5
标识
DOI:10.1109/ted.2022.3182282
摘要

Data retention (a time-variant characteristic of 3-D- NAND flash memory) is predicted through a bi-directional long short-term memory (LSTM) neural network (NN) model that learns sequential data obtained from chip measurements of a triple-level cell (TLC). The predicted results for all time points of each program (PGM) state are accurately predicted by the threshold voltage ( ${V}_{\text {th}}$ ) distribution. Thus, the predicted ${V}_{\text {th}}$ can be used to analyze the cause of retention failure. When the ${V}_{\text {th}}$ of the target cell is high or when that of the adjacent cell is small, the ${V}_{\text {th}}$ loss of the target cell is large. In addition, the ${V}_{\text {th}}$ loss increases as the ${V}_{\text {th}}$ of the adjacent cell decreases. Using a fully calibrated TCAD simulation, we verify the NN-based ${V}_{\text {th}}$ prediction by checking the change in the electron concentration in the nitride layer. Furthermore, the NN model predicts the ${V}_{\text {th}}$ for cells existing in other blocks, showing that they are consistent with the measured ${V}_{\text {th}}$ . The prediction times were 5 $\times \,\,10^{{5}}$ s, 5 $\times \,\,10^{{6}}$ s, and 2 $\times \,\,10^{{6}}$ s, but using machine learning (ML), we reduced the time required to predict the ${V}_{\text {th}}$ to only 2 s. Therefore, the proposed ML method enables fast, accurate, and effective predictive modeling of the time-variant ${V}_{\text {th}}$ of 3-D TLC NAND flash memory. Finally, the predicted ${V}_{\text {th}}$ can be included in the read retry table or included in the lookup table of the compensation circuit in NAND solutions. This can save a significant amount of time that would otherwise be spent on actual long-term measurements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助是风动采纳,获得10
1秒前
wanci应助勤恳的依珊采纳,获得10
2秒前
谦让的博完成签到,获得积分10
2秒前
赘婿应助某强采纳,获得10
2秒前
3秒前
哇咔啦啦完成签到,获得积分10
3秒前
4秒前
4秒前
qing晴完成签到,获得积分10
5秒前
华仔应助Yy采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
所所应助李LLL采纳,获得10
6秒前
6秒前
7秒前
8秒前
8秒前
9秒前
blueboom完成签到,获得积分10
9秒前
9秒前
YaoHui发布了新的文献求助10
10秒前
11秒前
的的完成签到,获得积分10
11秒前
zikk233完成签到 ,获得积分10
11秒前
wan完成签到,获得积分10
11秒前
12秒前
3d54s2发布了新的文献求助10
13秒前
深情冬云应助zsj采纳,获得10
13秒前
14秒前
Hyy发布了新的文献求助10
14秒前
领导范儿应助王逸飞采纳,获得10
15秒前
16秒前
16秒前
JIyong完成签到,获得积分10
16秒前
虚心谷梦发布了新的文献求助10
17秒前
冷静的萝完成签到,获得积分10
18秒前
许个愿吧完成签到,获得积分10
18秒前
zang6完成签到,获得积分10
18秒前
嘿嘿发布了新的文献求助10
18秒前
充电宝应助xin采纳,获得10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626696
求助须知:如何正确求助?哪些是违规求助? 4712525
关于积分的说明 14959934
捐赠科研通 4782412
什么是DOI,文献DOI怎么找? 2554487
邀请新用户注册赠送积分活动 1516118
关于科研通互助平台的介绍 1476413