Few-shot bearing fault diagnosis based on meta-learning with discriminant space optimization

线性判别分析 断层(地质) 计算机科学 人工智能 判别式 模式识别(心理学) 机器学习 聚类分析 特征向量 噪音(视频) 特征提取 特征(语言学) 数据挖掘 样品(材料) 方位(导航) 哲学 地质学 图像(数学) 地震学 色谱法 化学 语言学
作者
Dengming Zhang,Kai Zheng,Yin Bai,Dengke Yao,Dewei Yang,Shaowang Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (11): 115024-115024 被引量:18
标识
DOI:10.1088/1361-6501/ac8303
摘要

Abstract In practical industrial applications, the collected fault data are usually insufficient due to the sudden occurrence of faults. However, the current deep-learning-based fault diagnosis methods often rely on a large number of samples to achieve satisfactory performance. Moreover, the heavy background noise and the variability of working conditions also degrade the performance of existing fault diagnostic approaches. To address these challenges, a new fault diagnosis method for few-shot bearing fault diagnosis based on meta-learning with discriminant space optimization (MLDSO) is proposed in this research. First, the fault feature of the rolling bearing is extracted through the tailored networks. Then, the feature extractor is optimized by the discriminant space loss proposed in this paper, to promote the clustering of the extracted fault features of the same category and to distinguish between different types of fault features. Next, the feature extractor and discriminant space optimizer are constructed to optimize the feature discriminant space; thus, a high fault-tolerant discriminant space is obtained for meta-learning. Eventually, the faults in the new task can be accurately classified with the assistance of previously learned meta-knowledge and a few known samples when dealing with new tasks under different working conditions. The effectiveness and superiority of the proposed MLDSO method are verified via the datasets collected from our self-designed experimental platform and the Case Western Reserve University test platform. The experimental results show superior performance over the advanced methods. This indicates that the proposed method is a promising approach under small sample situations, heavy noise, and variable working conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水门发布了新的文献求助30
1秒前
树叶有专攻完成签到,获得积分10
4秒前
郑小七完成签到,获得积分10
5秒前
鲤鱼越越完成签到 ,获得积分10
5秒前
6秒前
失眠如波完成签到 ,获得积分10
6秒前
9秒前
涨不停ing发布了新的文献求助10
10秒前
heylay完成签到 ,获得积分10
10秒前
风笛完成签到 ,获得积分10
12秒前
erin完成签到 ,获得积分10
15秒前
15秒前
123完成签到,获得积分10
15秒前
smy发布了新的文献求助10
20秒前
大大的DY完成签到 ,获得积分10
20秒前
乙醇完成签到,获得积分10
21秒前
fryeia发布了新的文献求助10
23秒前
可爱的函函应助屿溡采纳,获得10
23秒前
23秒前
Hi完成签到 ,获得积分10
25秒前
琉璃岁月完成签到,获得积分10
26秒前
曾经的丹彤完成签到,获得积分10
26秒前
无为完成签到 ,获得积分10
27秒前
27秒前
gy发布了新的文献求助10
28秒前
晴天完成签到 ,获得积分10
29秒前
OK完成签到,获得积分10
29秒前
30秒前
科研通AI5应助Summer采纳,获得10
31秒前
为为为完成签到 ,获得积分10
31秒前
32秒前
ss完成签到,获得积分10
32秒前
SCI完成签到 ,获得积分10
33秒前
33秒前
33秒前
Echoheart发布了新的文献求助10
37秒前
琉璃岁月完成签到,获得积分10
37秒前
Luminance发布了新的文献求助10
38秒前
social_yjj应助帅气的可乐采纳,获得10
39秒前
屿溡发布了新的文献求助10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779363
求助须知:如何正确求助?哪些是违规求助? 3324881
关于积分的说明 10220321
捐赠科研通 3040066
什么是DOI,文献DOI怎么找? 1668529
邀请新用户注册赠送积分活动 798717
科研通“疑难数据库(出版商)”最低求助积分说明 758503