Biochar affects methylmercury production and bioaccumulation in paddy soils: Insights from soil-derived dissolved organic matter

生物炭 生物累积 溶解有机碳 甲基汞 环境化学 土壤水分 化学 有机质 环境修复 水田 环境科学 农学 污染 土壤科学 生态学 生物 热解 有机化学
作者
Siqi Zhang,Mingxing Wang,Jiang Liu,Senlin Tian,Xueling Yang,Guangquan Xiao,Guoce Xu,Tao Jiang,Dingyong Wang
出处
期刊:Journal of Environmental Sciences-china [Elsevier]
卷期号:119: 68-77 被引量:10
标识
DOI:10.1016/j.jes.2022.02.011
摘要

Biochar has been used increasingly as a soil additive to control mercury (Hg) pollution in paddy rice fields. As the most active component of soil organic matter, soil dissolved organic matter (DOM) plays a vital role in the environmental fate of contaminants. However, there are very few studies to determine the impact of biochar on the Hg cycle in rice paddies using insights from DOM. This study used original and modified biochar to investigate their effect on DOM dynamics and their potential impact on methylmercury (MeHg) production and bioaccumulation in rice plants. Porewater DOM was collected to analyze the variations in soil-derived DOM in paddy soils. The results showed that the addition of biochar, whether in original or modified form, significantly reduced the bioaccumulation of MeHg in rice plants, especially in hulls and grains (p<0.05). However, MeHg production in soils was only inhibited by the modified biochar. Biochar addition induced a significant increase in DOM's aromaticity and molecular weight (p<0.05), which decreased Hg bioavailability. Furthermore, enhanced microbial activity was also observed in DOM (p<0.05), further increasing MeHg production in the soil. Thus, the effect of biochar on the fate of Hg cycle involves competition between the two different roles of DOM. This study identified a specific mechanism by which biochar affects Hg behavior in rice paddy soil and contributes to understanding the more general influence of biochar in agriculture and contaminant remediation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牙牙完成签到,获得积分20
刚刚
1秒前
1秒前
Loooong应助庸尘采纳,获得10
1秒前
在水一方应助诚c采纳,获得10
1秒前
123发布了新的文献求助10
1秒前
王ccccc发布了新的文献求助10
2秒前
2秒前
3秒前
黄鹏完成签到,获得积分10
3秒前
沉默千万完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
gjww应助栗苒采纳,获得10
5秒前
5秒前
5秒前
5秒前
思瑞德完成签到 ,获得积分10
5秒前
曾经的冰淇淋完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
黄鹏发布了新的文献求助10
6秒前
Lucifer完成签到,获得积分10
6秒前
7秒前
xu发布了新的文献求助10
7秒前
7秒前
熊孩子完成签到 ,获得积分10
8秒前
8秒前
8秒前
surfing完成签到,获得积分10
9秒前
9秒前
好运发布了新的文献求助10
9秒前
今后应助啊啊啊啊轩采纳,获得10
10秒前
mm浮生诺梦完成签到,获得积分10
10秒前
gigi发布了新的文献求助10
10秒前
李雅君发布了新的文献求助10
11秒前
DQ8733完成签到,获得积分10
11秒前
香蕉珊珊发布了新的文献求助30
11秒前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
The Illustrated History of Gymnastics 500
Division and square root. Digit-recurrence algorithms and implementations 500
Hemerologies of Assyrian and Babylonian Scholars 500
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2492728
求助须知:如何正确求助?哪些是违规求助? 2151142
关于积分的说明 5494042
捐赠科研通 1871768
什么是DOI,文献DOI怎么找? 930645
版权声明 563435
科研通“疑难数据库(出版商)”最低求助积分说明 497702