Performance of Flexible Strain Sensors With Different Transition Mechanisms: A Review

灵敏度(控制系统) 电容 电感 导电体 信号(编程语言) 摩擦电效应 电压 材料科学 电气工程 电子工程 声学 计算机科学 工程类 电极 物理 量子力学 复合材料 程序设计语言
作者
Shidong Ma,Jian Tang,Tao Yan,Zhijuan Pan
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (8): 7475-7498 被引量:55
标识
DOI:10.1109/jsen.2022.3156286
摘要

To promote the application of flexible strain sensors in the fields of athletics feedback, health monitoring, human–machine interface, and robotics, the design strategies of various strain sensors were reviewed according to their transition mechanisms from the input stimulus to the output signal. The transition mechanisms were categorized into four major types: resistance, capacitance, voltage (piezoelectric and triboelectric), and inductance/magnetism. The sensing performance of flexible strain sensors was summarized based on this categorization and compared according to the sensing mechanism. The study observed that the performance of resistance-type sensors depends on the sensor shape and structure of the conductive network. These sensors can detect various forms of strains and have a broad sensing range and high sensitivity. However, these require an external power source. Capacitance-type sensors display rapid response and high sensitivity to force variations. Thus, they can accurately detect subtle deformations with low energy consumption. However, these strain sensors also have certain disadvantages such as a marginal strain range and low repeatability. Voltage-type sensors are energy-saving devices that can directly convert mechanical energy into an electrical signal. However, they exhibit low sensitivity and cannot accurately detect subtle strains. Inductance/magnetism-type sensors can detect strains wirelessly. However, the signal-to-noise ratio is low, and the sensing range is narrow. Finally, the application and development prospects of flexible strain sensors were presented by describing their fabrication techniques and transition mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪芯完成签到 ,获得积分10
刚刚
刚刚
llly完成签到 ,获得积分10
刚刚
shirley完成签到,获得积分10
刚刚
学术垃圾完成签到,获得积分10
1秒前
一行完成签到,获得积分10
2秒前
医学一小生完成签到,获得积分10
2秒前
waiai完成签到,获得积分10
3秒前
叨叨完成签到,获得积分10
3秒前
中午吃什么完成签到,获得积分10
3秒前
清脆冬卉完成签到,获得积分10
3秒前
美女完成签到,获得积分10
3秒前
jiayouya完成签到,获得积分10
3秒前
早睡早起身体棒完成签到,获得积分10
3秒前
凌波漫步完成签到,获得积分10
4秒前
小坨坨完成签到,获得积分20
4秒前
YUDI完成签到,获得积分10
4秒前
wp发布了新的文献求助10
4秒前
throb完成签到,获得积分10
4秒前
hgl完成签到,获得积分10
5秒前
852应助巧克力张张包采纳,获得10
5秒前
夏佳泽完成签到 ,获得积分10
5秒前
热情的远锋完成签到 ,获得积分20
5秒前
长安完成签到,获得积分10
5秒前
5秒前
KSung完成签到 ,获得积分10
5秒前
Orange应助Ru采纳,获得10
5秒前
5秒前
hotcas完成签到,获得积分10
6秒前
乌冬面完成签到,获得积分10
6秒前
齐靖柔完成签到 ,获得积分10
6秒前
锦敏完成签到 ,获得积分20
6秒前
xiantao完成签到,获得积分10
6秒前
眯眯眼的念蕾完成签到,获得积分10
6秒前
Michelle完成签到 ,获得积分10
7秒前
阳光完成签到,获得积分10
9秒前
9秒前
虚幻靖易完成签到,获得积分10
10秒前
Happy完成签到 ,获得积分10
11秒前
研友_VZG7GZ应助尔蝶采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5282645
求助须知:如何正确求助?哪些是违规求助? 4436641
关于积分的说明 13810205
捐赠科研通 4317265
什么是DOI,文献DOI怎么找? 2369713
邀请新用户注册赠送积分活动 1365123
关于科研通互助平台的介绍 1328570