亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DNCNet: Deep Radar Signal Denoising and Recognition

雷达 计算机科学 降噪 人工智能 信号处理 连续波雷达 雷达成像 信号(编程语言) 脉冲多普勒雷达 雷达信号处理 雷达跟踪器 语音识别 遥感 电信 地质学 程序设计语言
作者
Mingyang Du,Ping Zhong,Xiaohao Cai,Daping Bi
出处
期刊:IEEE Transactions on Aerospace and Electronic Systems [Institute of Electrical and Electronics Engineers]
卷期号:58 (4): 3549-3562 被引量:18
标识
DOI:10.1109/taes.2022.3153756
摘要

Deep learning with its rapid development and advancement has achieved unparalleled performance in many areas like computer vision as well as cognitive radio and signal recognition. However, the performance of most deep neural networks would suffer from degradation in the data mismatch scenario, e.g., the test dataset has a related but nonidentical distribution with the training dataset. Considering the noise corruption, a classifier's accuracy might drop sharply when it is tested on a dataset with much lower signal-to-noise ratio compared to its training dataset. To address this dilemma, in this work, we propose an efficient denoising and classification network (DNCNet) for radar signals. The DNCNet consists of denoising and classification subnetworks. First, a radar signal detection and synthetic mechanism is designed to generate pairwise clean data and noisy data for the DNCNet to train its denoising subnetwork. Then, a two-phase training procedure is proposed to train the denoising subnetwork in the first phase and strengthen the mapping between the denoising results and perceptual representation in the second. Experiments on synthetic and benchmark datasets validate the excellent performance of the proposed DNCNet against state-of-the-art methods in terms of both signal restoration quality and classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wukong完成签到,获得积分10
10秒前
橙子完成签到 ,获得积分10
25秒前
博ge完成签到 ,获得积分10
29秒前
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
凤迎雪飘完成签到,获得积分10
1分钟前
赘婿应助Nikki采纳,获得10
2分钟前
Owen应助无心的土豆采纳,获得10
2分钟前
2分钟前
3分钟前
槛外人发布了新的文献求助10
3分钟前
哈哈完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
3分钟前
千早爱音发布了新的文献求助300
3分钟前
范ER完成签到 ,获得积分10
3分钟前
万能图书馆应助清爽伯云采纳,获得10
4分钟前
槛外人完成签到,获得积分10
4分钟前
Orange应助wqwweqwe采纳,获得10
4分钟前
dahai完成签到,获得积分10
4分钟前
4分钟前
5分钟前
清爽伯云发布了新的文献求助10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
wanci应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
烟花应助科研通管家采纳,获得10
5分钟前
gf完成签到 ,获得积分10
5分钟前
山野有雾都完成签到,获得积分10
5分钟前
5分钟前
阳光发布了新的文献求助10
5分钟前
6分钟前
6分钟前
范振杰发布了新的文献求助10
6分钟前
sissie发布了新的文献求助10
6分钟前
6分钟前
酷波er应助sissie采纳,获得10
6分钟前
嘿嘿应助灵巧伊采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357029
求助须知:如何正确求助?哪些是违规求助? 4488644
关于积分的说明 13972390
捐赠科研通 4389691
什么是DOI,文献DOI怎么找? 2411714
邀请新用户注册赠送积分活动 1404269
关于科研通互助平台的介绍 1378379