Bearing Crack Diagnosis Using a Smooth Sliding Digital Twin to Overcome Fluctuations Arising in Unknown Conditions

方位(导航) 控制理论(社会学) 计算机科学 球(数学) 均方根 工程类 人工智能 数学 数学分析 控制(管理) 电气工程
作者
Farzin Piltan,Cheol Hong Kim,Jong-Myon Kim
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:12 (13): 6770-6770 被引量:5
标识
DOI:10.3390/app12136770
摘要

Bearings cause the most breakdowns in induction motors, which can result in significant economic losses. If faults in the bearings are not detected in time, they can cause the whole system to fail. System failures can lead to unexpected breakdowns, threats to worker safety, and huge economic losses. In this investigation, a new approach is proposed for fault diagnosis of bearings under variable low-speed conditions using a smooth sliding digital twin analysis of indirect acoustic emission (AE) signals. The proposed smooth sliding digital twin is designed based on the combination of the proposed autoregressive fuzzy Gauss–Laguerre bearing modeling approach and the proposed smooth sliding fuzzy observer. The proposed approach has four steps. The AE signals are resampled and the root mean square (RMS) feature is extracted from the AE signal in the first step. To estimate the resampled RMS bearing signal, a new smooth sliding digital twin is proposed in the second step. After that, the resampled RMS bearing residual signal is generated using the difference between the original and estimated signals. Next, a support vector machine (SVM) is proposed for crack detection and crack size identification. The effectiveness of this new approach is evaluated by AE signals provided by our lab’s bearing dataset, where the benchmark dataset consists of one normal and seven abnormal conditions: ball, outer, inner, outer-ball, inner-ball, inner-outer, and inner-outer-ball. The results demonstrated that the average accuracies of the anomaly diagnosis and crack size identification of AE signals for the bearings used in this new smooth sliding digital twin are 97.75% and 97.78%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉南风完成签到,获得积分10
刚刚
1秒前
Bao完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
石头发布了新的文献求助10
5秒前
7秒前
xiaoyan完成签到,获得积分10
9秒前
搞怪的明辉完成签到,获得积分10
10秒前
自强不息完成签到,获得积分10
11秒前
12秒前
fhkq完成签到,获得积分10
15秒前
拼搏半梦完成签到,获得积分10
15秒前
完美世界应助积极的初南采纳,获得10
16秒前
elerain完成签到,获得积分10
16秒前
落忆完成签到 ,获得积分10
17秒前
煎饼果子完成签到 ,获得积分10
19秒前
orixero应助石头采纳,获得10
20秒前
吉吉完成签到 ,获得积分10
21秒前
共享精神应助星星采纳,获得10
22秒前
积雪完成签到 ,获得积分10
23秒前
obcx发布了新的文献求助20
23秒前
媛媛完成签到 ,获得积分10
28秒前
28秒前
29秒前
撒大苏打完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
29秒前
30秒前
30秒前
自信的孱完成签到,获得积分10
31秒前
chloe完成签到 ,获得积分10
31秒前
拾捌发布了新的文献求助10
32秒前
34秒前
活泼的平灵完成签到,获得积分10
34秒前
唐唐完成签到,获得积分10
34秒前
35秒前
善良的剑通应助韧迹采纳,获得20
35秒前
科研狗发布了新的文献求助10
36秒前
zyw完成签到 ,获得积分10
36秒前
隐形觅翠完成签到,获得积分10
37秒前
虚拟莫茗完成签到 ,获得积分10
38秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4217400
求助须知:如何正确求助?哪些是违规求助? 3751453
关于积分的说明 11796135
捐赠科研通 3416241
什么是DOI,文献DOI怎么找? 1874990
邀请新用户注册赠送积分活动 928796
科研通“疑难数据库(出版商)”最低求助积分说明 837823