清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Transfer Learning Framework for Deep Learning-Based CT-to-Perfusion Mapping on Lung Cancer Patients

肺癌 体素 灌注 癌症 深度学习 医学 灌注扫描 学习迁移 人工智能 核医学 基本事实 相似性(几何) 计算机科学 放射科 病理 内科学 图像(数学)
作者
Ge Ren,Bing Li,Saikit Lam,Haonan Xiao,Yuhua Huang,Andy Lai-Yin Cheung,Yufei Lu,Ronghu Mao,Hong Ge,Feng‐Ming Kong,Wai-yin Ho,Jing Cai
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:12 被引量:10
标识
DOI:10.3389/fonc.2022.883516
摘要

Deep learning model has shown the feasibility of providing spatial lung perfusion information based on CT images. However, the performance of this method on lung cancer patients is yet to be investigated. This study aims to develop a transfer learning framework to evaluate the deep learning based CT-to-perfusion mapping method specifically on lung cancer patients.SPECT/CT perfusion scans of 33 lung cancer patients and 137 non-cancer patients were retrospectively collected from two hospitals. To adapt the deep learning model on lung cancer patients, a transfer learning framework was developed to utilize the features learned from the non-cancer patients. These images were processed to extract features from three-dimensional CT images and synthesize the corresponding CT-based perfusion images. A pre-trained model was first developed using a dataset of patients with lung diseases other than lung cancer, and subsequently fine-tuned specifically on lung cancer patients under three-fold cross-validation. A multi-level evaluation was performed between the CT-based perfusion images and ground-truth SPECT perfusion images in aspects of voxel-wise correlation using Spearman's correlation coefficient (R), function-wise similarity using Dice Similarity Coefficient (DSC), and lobe-wise agreement using mean perfusion value for each lobe of the lungs.The fine-tuned model yielded a high voxel-wise correlation (0.8142 ± 0.0669) and outperformed the pre-trained model by approximately 8%. Evaluation of function-wise similarity indicated an average DSC value of 0.8112 ± 0.0484 (range: 0.6460-0.8984) for high-functional lungs and 0.8137 ± 0.0414 (range: 0.6743-0.8902) for low-functional lungs. Among the 33 lung cancer patients, high DSC values of greater than 0.7 were achieved for high functional volumes in 32 patients and low functional volumes in all patients. The correlations of the mean perfusion value on the left upper lobe, left lower lobe, right upper lobe, right middle lobe, and right lower lobe were 0.7314, 0.7134, 0.5108, 0.4765, and 0.7618, respectively.For lung cancer patients, the CT-based perfusion images synthesized by the transfer learning framework indicated a strong voxel-wise correlation and function-wise similarity with the SPECT perfusion images. This suggests the great potential of the deep learning method in providing regional-based functional information for functional lung avoidance radiation therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaozou55完成签到 ,获得积分10
46秒前
七月流火应助紫熊采纳,获得30
56秒前
酷酷小子完成签到 ,获得积分10
59秒前
naczx完成签到,获得积分0
1分钟前
淡淡醉波wuliao完成签到 ,获得积分0
1分钟前
美好灵寒完成签到 ,获得积分10
1分钟前
鬼见愁应助科研通管家采纳,获得20
1分钟前
胡国伦完成签到 ,获得积分10
1分钟前
叶宇豪完成签到,获得积分10
1分钟前
491293966完成签到 ,获得积分10
2分钟前
紫熊完成签到,获得积分10
2分钟前
小灰灰完成签到 ,获得积分10
2分钟前
星辰大海应助玄音采纳,获得10
2分钟前
3分钟前
玄音发布了新的文献求助10
3分钟前
鬼见愁应助科研通管家采纳,获得20
3分钟前
sissiarno应助科研小白白白采纳,获得200
3分钟前
beihaik完成签到 ,获得积分10
4分钟前
4分钟前
领导范儿应助玄音采纳,获得10
4分钟前
光合作用完成签到,获得积分10
5分钟前
5分钟前
稳重岩完成签到 ,获得积分10
5分钟前
玄音发布了新的文献求助10
5分钟前
5分钟前
binfo完成签到,获得积分10
5分钟前
贰鸟发布了新的文献求助30
5分钟前
贰鸟发布了新的文献求助30
5分钟前
贰鸟发布了新的文献求助30
5分钟前
liberation完成签到 ,获得积分0
5分钟前
Sandy举报想去电影院求助涉嫌违规
6分钟前
QQ完成签到 ,获得积分10
6分钟前
mzhang2完成签到 ,获得积分10
6分钟前
Ava应助玄音采纳,获得10
6分钟前
6分钟前
6分钟前
zz完成签到 ,获得积分10
6分钟前
玄音发布了新的文献求助10
6分钟前
披着羊皮的狼完成签到 ,获得积分10
6分钟前
Xenia完成签到 ,获得积分10
6分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 760
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4149740
求助须知:如何正确求助?哪些是违规求助? 3685853
关于积分的说明 11643471
捐赠科研通 3378992
什么是DOI,文献DOI怎么找? 1854438
邀请新用户注册赠送积分活动 916630
科研通“疑难数据库(出版商)”最低求助积分说明 830495