顺铂
分子生物学
PI3K/AKT/mTOR通路
化学
下调和上调
蛋白激酶B
癌症研究
癌细胞
细胞凋亡
癌症
生物
生物化学
化疗
遗传学
基因
作者
Keda Yang,Ying Wang,Fan Zhang,Qingling Li,Baihua Luo,Deyun Feng,Zhijun Zeng
标识
DOI:10.1007/s11010-022-04436-x
摘要
This study aimed to investigate the role of cancer-associated fibroblast (CAF)-derived midkine (MK) in cisplatin (DDP) resistance. The primary cultures of CAFs and non-cancer fibroblasts (NFs) were isolated and purified. The DDP-resistant gastric cancer (GC) cells were cultured with CAF-conditioned medium. QRT-PCR and Elisa assays were employed to determine MK expression. The expression of ST7-AS1 was measured by qRT-PCR. The impact of CAFs, MK, and ST7-AS1 silencing on DDP resistance was determined by MTT and Annexin V/PI staining assay. Expression of EMT markers and PI3K/AKT was determined by Western blot and qRT-PCR. The role of MK in DDP resistance was confirmed in a xenograft model. Incubation with CAF-conditioned medium increased the IC50 to DDP. Also, incubation with CAF-conditioned medium increased cell viability, reduced cell apoptosis, and promoted EMT in DDP-resistant GC cells, which were all blocked with MK neutralization antibody treatment. MK increased the DDP resistance and upregulated the expression of ST7-AS1 in DDP-resistant GC cells. Additionally, ST7-AS1 knockdown increased the sensitivity to DDP by inhibiting EMT. Moreover, ST7-AS1 knockdown significantly decreased the phosphorylation of PI3K and AKT, and suppressed EMT, which were restored by MK addition. Finally, MK promoted tumor growth and DDP resistance in a mice model bearing the SGC-7901/DDP xenografts. CAF-derived MK promotes EMT-mediated DDP resistance via upregulation of ST7-AS1 and activation of PI3K/AKT pathway.Graphical abstract
科研通智能强力驱动
Strongly Powered by AbleSci AI